BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38215750)

  • 1. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
    Pacini C; Duncan E; Gonçalves E; Gilbert J; Bhosle S; Horswell S; Karakoc E; Lightfoot H; Curry E; Muyas F; Bouaboula M; Pedamallu CS; Cortes-Ciriano I; Behan FM; Zalmas LP; Barthorpe A; Francies H; Rowley S; Pollard J; Beltrao P; Parts L; Iorio F; Garnett MJ
    Cancer Cell; 2024 Feb; 42(2):301-316.e9. PubMed ID: 38215750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
    Behan FM; Iorio F; Picco G; Gonçalves E; Beaver CM; Migliardi G; Santos R; Rao Y; Sassi F; Pinnelli M; Ansari R; Harper S; Jackson DA; McRae R; Pooley R; Wilkinson P; van der Meer D; Dow D; Buser-Doepner C; Bertotti A; Trusolino L; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    Nature; 2019 Apr; 568(7753):511-516. PubMed ID: 30971826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated cross-study datasets of genetic dependencies in cancer.
    Pacini C; Dempster JM; Boyle I; Gonçalves E; Najgebauer H; Karakoc E; van der Meer D; Barthorpe A; Lightfoot H; Jaaks P; McFarland JM; Garnett MJ; Tsherniak A; Iorio F
    Nat Commun; 2021 Mar; 12(1):1661. PubMed ID: 33712601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens.
    Dede M; McLaughlin M; Kim E; Hart T
    Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens.
    Fortin JP; Tan J; Gascoigne KE; Haverty PM; Forrest WF; Costa MR; Martin SE
    Genome Biol; 2019 Jan; 20(1):21. PubMed ID: 30683138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first-generation pediatric cancer dependency map.
    Dharia NV; Kugener G; Guenther LM; Malone CF; Durbin AD; Hong AL; Howard TP; Bandopadhayay P; Wechsler CS; Fung I; Warren AC; Dempster JM; Krill-Burger JM; Paolella BR; Moh P; Jha N; Tang A; Montgomery P; Boehm JS; Hahn WC; Roberts CWM; McFarland JM; Tsherniak A; Golub TR; Vazquez F; Stegmaier K
    Nat Genet; 2021 Apr; 53(4):529-538. PubMed ID: 33753930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining a Cancer Dependency Map.
    Tsherniak A; Vazquez F; Montgomery PG; Weir BA; Kryukov G; Cowley GS; Gill S; Harrington WF; Pantel S; Krill-Burger JM; Meyers RM; Ali L; Goodale A; Lee Y; Jiang G; Hsiao J; Gerath WFJ; Howell S; Merkel E; Ghandi M; Garraway LA; Root DE; Golub TR; Boehm JS; Hahn WC
    Cell; 2017 Jul; 170(3):564-576.e16. PubMed ID: 28753430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an integrated map of genetic interactions in cancer cells.
    Rauscher B; Heigwer F; Henkel L; Hielscher T; Voloshanenko O; Boutros M
    Mol Syst Biol; 2018 Feb; 14(2):e7656. PubMed ID: 29467179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are CRISPR Screens Providing the Next Generation of Therapeutic Targets?
    Vazquez F; Sellers WR
    Cancer Res; 2021 Dec; 81(23):5806-5809. PubMed ID: 34853037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Project Score database: a resource for investigating cancer cell dependencies and prioritizing therapeutic targets.
    Dwane L; Behan FM; Gonçalves E; Lightfoot H; Yang W; van der Meer D; Shepherd R; Pignatelli M; Iorio F; Garnett MJ
    Nucleic Acids Res; 2021 Jan; 49(D1):D1365-D1372. PubMed ID: 33068406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Cancer Genomic Amplifications Identifies Druggable Collateral Dependencies within the Amplicon.
    Pons G; Gallo-Oller G; Navarro N; Zarzosa P; Sansa-Girona J; García-Gilabert L; Magdaleno A; Segura MF; Sánchez de Toledo J; Gallego S; Moreno L; Roma J
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CancerGD: A Resource for Identifying and Interpreting Genetic Dependencies in Cancer.
    Bridgett S; Campbell J; Lord CJ; Ryan CJ
    Cell Syst; 2017 Jul; 5(1):82-86.e3. PubMed ID: 28711281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets.
    Dempster JM; Pacini C; Pantel S; Behan FM; Green T; Krill-Burger J; Beaver CM; Younger ST; Zhivich V; Najgebauer H; Allen F; Gonçalves E; Shepherd R; Doench JG; Yusa K; Vazquez F; Parts L; Boehm JS; Golub TR; Hahn WC; Root DE; Garnett MJ; Tsherniak A; Iorio F
    Nat Commun; 2019 Dec; 10(1):5817. PubMed ID: 31862961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SynLeGG: analysis and visualization of multiomics data for discovery of cancer 'Achilles Heels' and gene function relationships.
    Wappett M; Harris A; Lubbock ALR; Lobb I; McDade S; Overton IM
    Nucleic Acids Res; 2021 Jul; 49(W1):W613-W618. PubMed ID: 33997893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.