BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38215760)

  • 1. Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism.
    Meisel JD; Miranda M; Skinner OS; Wiesenthal PP; Wellner SM; Jourdain AA; Ruvkun G; Mootha VK
    Cell; 2024 Feb; 187(3):659-675.e18. PubMed ID: 38215760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans.
    Yang W; Hekimi S
    Aging Cell; 2010 Jun; 9(3):433-47. PubMed ID: 20346072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caenorhabditis elegans development requires mitochondrial function in the nervous system.
    Ndegwa S; Lemire BD
    Biochem Biophys Res Commun; 2004 Jul; 319(4):1307-13. PubMed ID: 15194510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans.
    Yang W; Hekimi S
    PLoS Biol; 2010 Dec; 8(12):e1000556. PubMed ID: 21151885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis.
    Grad LI; Lemire BD
    Hum Mol Genet; 2004 Feb; 13(3):303-14. PubMed ID: 14662656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo metabolic flux profiling with stable isotopes discriminates sites and quantifies effects of mitochondrial dysfunction in C. elegans.
    Vergano SS; Rao M; McCormack S; Ostrovsky J; Clarke C; Preston J; Bennett MJ; Yudkoff M; Xiao R; Falk MJ
    Mol Genet Metab; 2014 Mar; 111(3):331-341. PubMed ID: 24445252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and functional analysis of mitochondrial complex I assembly factor homologues in C. elegans.
    van den Ecker D; van den Brand MA; Ariaans G; Hoffmann M; Bossinger O; Mayatepek E; Nijtmans LG; Distelmaier F
    Mitochondrion; 2012 May; 12(3):399-405. PubMed ID: 22387847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans.
    Miyadera H; Amino H; Hiraishi A; Taka H; Murayama K; Miyoshi H; Sakamoto K; Ishii N; Hekimi S; Kita K
    J Biol Chem; 2001 Mar; 276(11):7713-6. PubMed ID: 11244089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring de novo coenzyme Q biosynthesis in Caenorhabditis elegans coq-3 mutants yields profound rescue compared to exogenous coenzyme Q supplementation.
    Gomez F; Saiki R; Chin R; Srinivasan C; Clarke CF
    Gene; 2012 Sep; 506(1):106-16. PubMed ID: 22735617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I).
    Zickermann V; Dröse S; Tocilescu MA; Zwicker K; Kerscher S; Brandt U
    J Bioenerg Biomembr; 2008 Oct; 40(5):475-83. PubMed ID: 18982432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1.
    Sakaue Y; Kim J; Miyamoto Y
    Int J Nanomedicine; 2010 Sep; 5():687-95. PubMed ID: 20957220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoflurane selectively inhibits distal mitochondrial complex I in Caenorhabditis elegans.
    Kayser EB; Suthammarak W; Morgan PG; Sedensky MM
    Anesth Analg; 2011 Jun; 112(6):1321-9. PubMed ID: 21467554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells.
    DeHaan C; Habibi-Nazhad B; Yan E; Salloum N; Parliament M; Allalunis-Turner J
    Mol Cancer; 2004 Jul; 3():19. PubMed ID: 15248896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia.
    Agani FH; Pichiule P; Chavez JC; LaManna JC
    J Biol Chem; 2000 Nov; 275(46):35863-7. PubMed ID: 10961998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue native electrophoresis to study mitochondrial complex I in C. elegans.
    van den Ecker D; van den Brand MA; Bossinger O; Mayatepek E; Nijtmans LG; Distelmaier F
    Anal Biochem; 2010 Dec; 407(2):287-9. PubMed ID: 20705045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS-based lethality of
    Govindan JA; Jayamani E; Ruvkun G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21651-21658. PubMed ID: 31591219
    [No Abstract]   [Full Text] [Related]  

  • 18. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria.
    Das KC
    PLoS One; 2013; 8(9):e73358. PubMed ID: 24023862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboflavin enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH-ubiquinone oxidoreductase mutants.
    Grad LI; Lemire BD
    Biochim Biophys Acta; 2006 Feb; 1757(2):115-22. PubMed ID: 16443191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans.
    Onukwufor JO; Farooqi MA; Vodičková A; Koren SA; Baldzizhar A; Berry BJ; Beutner G; Porter GA; Belousov V; Grossfield A; Wojtovich AP
    Nat Commun; 2022 May; 13(1):2403. PubMed ID: 35504873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.