These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38215870)

  • 21. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan.
    Rehman IU; Ishaq M; Ali L; Khan S; Ahmad I; Din IU; Ullah H
    Ecotoxicol Environ Saf; 2018 Jun; 154():127-136. PubMed ID: 29459162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq.
    Hamad SH; Schauer JJ; Shafer MM; Al-Rheem EA; Skaar PS; Heo J; Tejedor-Tejedor I
    Sci Total Environ; 2014 Oct; 494-495():39-48. PubMed ID: 25029503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Geostatistical Analysis and Random Forest for Source Analysis and Human Health Risk Assessment of Potentially Toxic Elements (PTEs) in Arable Land Soil.
    Xiao L; Zhou Y; Huang H; Liu YJ; Li K; Li MY; Tian Y; Wu F
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geospatial distribution of metal(loid)s and human health risk assessment due to intake of contaminated groundwater around an industrial hub of northern India.
    Kashyap R; Verma KS; Uniyal SK; Bhardwaj SK
    Environ Monit Assess; 2018 Feb; 190(3):136. PubMed ID: 29435679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran.
    Bineshpour M; Payandeh K; Nazarpour A; Sabzalipour S
    Environ Geochem Health; 2021 Dec; 43(12):4939-4958. PubMed ID: 33210156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oral bioaccessibility of potentially toxic elements (PTEs) and related health risk in urban playground soil from a medieval bell metal industrial town Khagra, India.
    Laha T; Gope M; Datta S; Masto RE; Balachandran S
    Environ Geochem Health; 2023 Aug; 45(8):5619-5637. PubMed ID: 32920749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human-induced pollution and toxicity of river sediment by potentially toxic elements (PTEs) and accumulation in a paddy soil-rice system: A comprehensive watershed-scale assessment.
    Haghnazar H; Belmont P; Johannesson KH; Aghayani E; Mehraein M
    Chemosphere; 2023 Jan; 311(Pt 1):136842. PubMed ID: 36273611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution and origin of potentially toxic elements in a multi-aquifer system.
    Gharaat MJ; Mohammadi Z; Rezanezhad F
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):43724-43742. PubMed ID: 32740837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Potentially Toxic Element Concentrations in Soil And Vegetables and Impact on Human Health Through TF, EDI, and HRI Indicators: Case Study Anadrinia Region (Kosovo).
    Shehu I; Malsiu A; Bajraktari N
    Biol Trace Elem Res; 2023 Jan; 201(1):479-492. PubMed ID: 35182384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China).
    Jiang F; Ren B; Hursthouse A; Deng R; Wang Z
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16556-16567. PubMed ID: 30982190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring geochemical distribution of potentially toxic elements (PTEs) in wetland and agricultural soils and associated health risks.
    Khan I; Choudhary BC; Izhar S; Kumar D; Satyanarayanan M; Rajput VD; Khan S
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):17964-17980. PubMed ID: 36637646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure to arsenic and other potentially toxic elements: health risk assessment and source analysis in the Wuming Basin, Guangxi Province, China.
    Hu B; Li J; Liu R; Lei G; Wang X; Wang L
    Sci Rep; 2024 Feb; 14(1):2835. PubMed ID: 38310166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs.
    Sharma S; Kaur J; Nagpal AK; Kaur I
    Environ Monit Assess; 2016 Sep; 188(9):506. PubMed ID: 27491949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland-Case Study.
    Tytła M
    Int J Environ Res Public Health; 2019 Jul; 16(13):. PubMed ID: 31323916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the health risks of potentially toxic elements through wheat consumption in multi-industrial metropolis of Faisalabad, Pakistan.
    Abbas Q; Yousaf B; Liu G; Zia-Ur-Rehman M; Ali MU; Munir MAM; Hussain SA
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26646-26657. PubMed ID: 28956229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potentially toxic metals in irrigation water, soil, and vegetables and their health risks using Monte Carlo models.
    Orosun MM; Nwabachili S; Alshehri RF; Omeje M; Alshdoukhi IF; Okoro HK; Ogunkunle CO; Louis H; Abdulhamid FA; Osahon SE; Mohammed AU; Ehinlafa EO; Yunus SO; Ife-Adediran O
    Sci Rep; 2023 Dec; 13(1):21220. PubMed ID: 38040785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioaccumulation and health risk assessment of exposure to potentially toxic elements by consuming agricultural products irrigated with wastewater effluents.
    Dovlatabadi A; Estiri EH; Najafi ML; Ghorbani A; Rezaei H; Behmanesh M; Momeni E; Gholizadeh A; Cristaldi A; Mancini G; Alahabadi A; Miri M
    Environ Res; 2022 Apr; 205():112479. PubMed ID: 34861231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of trace metals in a soil-tea leaves-tea infusion system: characteristics, translocation and health risk assessment.
    Yang B; Ren S; Zhang K; Li S; Zou Z; Zhao X; Li J; Ma Y; Zhu X; Fang W
    Environ Geochem Health; 2022 Dec; 44(12):4631-4645. PubMed ID: 35247121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect.
    Wang Z; Meng B; Zhang W; Bai J; Ma Y; Liu M
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29843444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heavy metal contamination in river water, sediment, groundwater and human blood, from Kanpur, Uttar Pradesh, India.
    Gupta V; Kumar D; Dwivedi A; Vishwakarma U; Malik DS; Paroha S; Mohan N; Gupta N
    Environ Geochem Health; 2023 May; 45(5):1807-1818. PubMed ID: 35674977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.