BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38215877)

  • 1. Molecular mechanisms and trade-offs underlying fluctuating thermal regimes during low-temperature storage.
    Torson AS; Yocum GD; Bowsher JH
    Curr Opin Insect Sci; 2024 Apr; 62():101160. PubMed ID: 38215877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance.
    Colinet H; Rinehart JP; Yocum GD; Greenlee KJ
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30037966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii).
    Enriquez T; Ruel D; Charrier M; Colinet H
    Insect Sci; 2020 Apr; 27(2):317-335. PubMed ID: 30381878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of 70 kDa heat shock protein expression.
    Tollarová-Borovanská M; Lalouette L; Kostál V
    Cryo Letters; 2009; 30(5):312-9. PubMed ID: 19946654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuating temperatures extend longevity in pupae and adult stages of the sepsid Themira biloba.
    Melicher D; Bowsher JH; Rinehart JP
    J Therm Biol; 2021 Jul; 99():102959. PubMed ID: 34420614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate Transcriptional Response to a Temperature Pulse under a Fluctuating Thermal Regime.
    Melicher D; Torson AS; Anderson TJ; Yocum GD; Rinehart JP; Bowsher JH
    Integr Comp Biol; 2019 Aug; 59(2):320-337. PubMed ID: 31173075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure.
    Colinet H; Nguyen TT; Cloutier C; Michaud D; Hance T
    Insect Biochem Mol Biol; 2007 Nov; 37(11):1177-88. PubMed ID: 17916504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuating thermal regime preserves physiological homeostasis and reproductive capacity in Drosophila suzukii.
    Grumiaux C; Andersen MK; Colinet H; Overgaard J
    J Insect Physiol; 2019; 113():33-41. PubMed ID: 30615858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Fluctuating Thermal Regimes and Commercially Achievable Constant-Temperature Regimes for Short-Term Storage of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae).
    Yocum GD; Rajamohan A; Rinehart JP
    J Econ Entomol; 2021 Apr; 114(2):530-537. PubMed ID: 33686393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic CO(2) emissions during the high temperature pulse of fluctuating thermal regime in eye-pigmented pupae of Megachile rotundata.
    Yocum GD; Greenlee KJ; Rinehart JP; Bennett MM; Kemp WP
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Dec; 160(4):480-5. PubMed ID: 21854865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Fluctuating Thermal Regime Storage of Developing Megachile rotundata (Hymenoptera: Megachilidae).
    Rinehart JP; Yocum GD; Kemp WP; Bowsher JH
    J Econ Entomol; 2016 Mar; 109(3):993-1000. PubMed ID: 26994099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis.
    Kostál V; Renault D; Mehrabianová A; Bastl J
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):231-8. PubMed ID: 17275375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Male reproductive potential of Aphidius colemani (Hymenoptera: Aphidiinae) exposed to constant or fluctuating thermal regimens.
    Colinet H; Hance T
    Environ Entomol; 2009 Feb; 38(1):242-9. PubMed ID: 19791620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges.
    Sinclair BJ; Sørensen JG; Terblanche JS
    Bull Entomol Res; 2022 Aug; 112(4):441-450. PubMed ID: 35346401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach.
    Colinet H; Renault D; Javal M; Berková P; Šimek P; Koštál V
    Biochim Biophys Acta; 2016 Nov; 1861(11):1736-1745. PubMed ID: 27542540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of fat accumulation and reserves for insect overwintering.
    Enriquez T; Visser B
    Curr Opin Insect Sci; 2023 Dec; 60():101118. PubMed ID: 37739063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological responses to fluctuating temperatures are characterized by distinct transcriptional profiles in a solitary bee.
    Torson AS; Yocum GD; Rinehart JP; Nash SA; Kvidera KM; Bowsher JH
    J Exp Biol; 2017 Sep; 220(Pt 18):3372-3380. PubMed ID: 28724647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations.
    Lalouette L; Williams CM; Hervant F; Sinclair BJ; Renault D
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Feb; 158(2):229-34. PubMed ID: 21074633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes.
    Lalouette L; Kostál V; Colinet H; Gagneul D; Renault D
    FEBS J; 2007 Apr; 274(7):1759-67. PubMed ID: 17331186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The many roles of fats in overwintering insects.
    Sinclair BJ; Marshall KE
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.