BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38215877)

  • 21. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta.
    Boardman L; Sørensen JG; Terblanche JS
    J Insect Physiol; 2013 Aug; 59(8):781-94. PubMed ID: 23684741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal history of alfalfa leafcutting bees affects nesting and diapause incidence.
    Earls KN; Porter MS; Rinehart JP; Greenlee KJ
    J Exp Biol; 2021 Nov; 224(22):. PubMed ID: 34694400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Temperature and Wildflower Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage.
    Park MG; Delphia CM; Prince C; Yocum GD; Rinehart JP; O'Neill KM; Burkle LA; Bowsher JH; Greenlee KJ
    Environ Entomol; 2022 Oct; 51(5):958-968. PubMed ID: 35964238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of ATP homeostasis during chronic cold stress and recovery in the chill susceptible beetle (Alphitobius diaperinus).
    Colinet H
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):63-7. PubMed ID: 21596153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trade-offs between winter survival and reproduction in female insects.
    Meuti ME; Fyie LR; Fiorta M; Denlinger DL
    Integr Comp Biol; 2024 Apr; ():. PubMed ID: 38664063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Daily fluctuating temperatures decrease growth and reproduction rate of a lethal amphibian fungal pathogen in culture.
    Lindauer AL; Maier PA; Voyles J
    BMC Ecol; 2020 Apr; 20(1):18. PubMed ID: 32245440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluctuating thermal regimes prevent chill injury but do not change patterns of oxidative stress in the alfalfa leafcutting bee, Megachile rotundata.
    Torson AS; Yocum GD; Rinehart JP; Nash SA; Bowsher JH
    J Insect Physiol; 2019 Oct; 118():103935. PubMed ID: 31472123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection on phenotypic plasticity favors thermal canalization.
    Svensson EI; Gomez-Llano M; Waller JT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29767-29774. PubMed ID: 33168720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluctuating temperatures extend median lifespan, improve reproduction and reduce growth in turquoise killifish.
    Žák J; Reichard M
    Exp Gerontol; 2020 Oct; 140():111073. PubMed ID: 32858146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster.
    Koštál V; Korbelová J; Štětina T; Poupardin R; Colinet H; Zahradníčková H; Opekarová I; Moos M; Šimek P
    Sci Rep; 2016 Aug; 6():32346. PubMed ID: 27573891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae)?
    Colinet H; Hance T; Vernon P; Bouchereau A; Renault D
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):484-92. PubMed ID: 17347005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonconstant Thermal Regimes Enhance Overwintering Success and Accelerate Diapause Development for Smicronyx fulvus (Coleoptera: Curculionidae).
    Prasifka JR; Rinehart JP; Yocum GD
    J Econ Entomol; 2015 Aug; 108(4):1804-9. PubMed ID: 26470322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata.
    Torson AS; Yocum GD; Rinehart JP; Kemp WP; Bowsher JH
    J Exp Biol; 2015 Apr; 218(Pt 7):1060-8. PubMed ID: 25657206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.
    van Dooremalen C; Suring W; Ellers J
    J Insect Physiol; 2011 Sep; 57(9):1267-73. PubMed ID: 21704631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes.
    Souissi A; Hwang JS; Souissi S
    Sci Rep; 2021 Oct; 11(1):20139. PubMed ID: 34635769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Negative effects of fluctuating temperatures around the optimal temperature on reproduction and survival of the red flour beetle.
    Scharf I; Segal D; Bar A; Gottlieb D
    J Therm Biol; 2022 Jan; 103():103165. PubMed ID: 35027185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Halyomorpha halys (Hemiptera: Pentatomidae) Winter Survival, Feeding Activity, and Reproduction Rates Based on Episodic Cold Shock and Winter Temperature Regimes.
    Lowenstein DM; Walton VM
    J Econ Entomol; 2018 May; 111(3):1210-1218. PubMed ID: 29672734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fitness under high temperatures is overestimated when daily thermal fluctuation is ignored.
    Bagni T; Siaussat D; Maria A; Fuentes A; Couzi P; Massot M
    J Therm Biol; 2024 Jan; 119():103806. PubMed ID: 38335848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low temperature tolerance of three Aedes albopictus strains (Diptera: Culicidae) under constant and fluctuating temperature scenarios.
    Tippelt L; Werner D; Kampen H
    Parasit Vectors; 2020 Nov; 13(1):587. PubMed ID: 33225979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing drosophila winter morphotypes.
    Stockton DG; Loeb GM
    J Insect Physiol; 2021; 131():104246. PubMed ID: 33930409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.