These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38215877)

  • 41. Thermoprofile Parameters Affect Survival of Megachile rotundata During Exposure to Low-Temperatures.
    Yocum GD; Rinehart JP; Rajamohan A; Bowsher JH; Yeater KM; Greenlee KJ
    Integr Comp Biol; 2019 Oct; 59(4):1089-1102. PubMed ID: 31270534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures.
    Loisel A; Isla A; Daufresne M
    J Therm Biol; 2019 Aug; 84():460-468. PubMed ID: 31466787
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energetics as a lens to understanding aquatic insect's responses to changing temperature, dissolved oxygen and salinity regimes.
    Verberk WC; Buchwalter DB; Kefford BJ
    Curr Opin Insect Sci; 2020 Oct; 41():46-53. PubMed ID: 32682316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Integrative Physiology of Insect Chill Tolerance.
    Overgaard J; MacMillan HA
    Annu Rev Physiol; 2017 Feb; 79():187-208. PubMed ID: 27860831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Constant temperature and fluctuating temperature have distinct effects on hypoxia tolerance in killifish (Fundulus heteroclitus).
    Ridgway MR; Scott GR
    J Exp Biol; 2023 May; 226(10):. PubMed ID: 37073679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Survive a Warming Climate: Insect Responses to Extreme High Temperatures.
    Ma CS; Ma G; Pincebourde S
    Annu Rev Entomol; 2021 Jan; 66():163-184. PubMed ID: 32870704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of short-term cold temperature stress on development, survival and reproduction of Dysdercus koenigii (Hemiptera: Pyrrhocoridae).
    Sarmad M; Ishfaq A; Arif H; Zaka SM
    Cryobiology; 2020 Feb; 92():47-52. PubMed ID: 31580831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fluctuating thermal regime improves long-term survival of quiescent prepupal Megachile rotundata (Hymenoptera: Megachilidae).
    Rinehart JP; Yocum GD; Kemp WP; Greenlee KJ
    J Econ Entomol; 2013 Jun; 106(3):1081-8. PubMed ID: 23865170
    [TBL] [Abstract][Full Text] [Related]  

  • 49. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ecologically relevant thermal fluctuations enhance offspring fitness: biological and methodological implications for studies of thermal developmental plasticity.
    Hall JM; Warner DA
    J Exp Biol; 2020 Oct; 223(Pt 19):. PubMed ID: 32778564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Climatic variability and the evolution of insect freeze tolerance.
    Sinclair BJ; Addo-Bediako A; Chown SL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):181-95. PubMed ID: 12803420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Constant versus fluctuating temperatures in the interactions between Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae).
    Bahar MH; Soroka JJ; Dosdall LM
    Environ Entomol; 2012 Dec; 41(6):1653-61. PubMed ID: 23321115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cold tolerance of third-instar Drosophila suzukii larvae.
    Jakobs R; Ahmadi B; Houben S; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2017 Jan; 96():45-52. PubMed ID: 27765625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans.
    Manenti T; Loeschcke V; Sørensen JG
    J Insect Physiol; 2018 Jan; 104():40-47. PubMed ID: 29175088
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus.
    Podrabsky JE; Somero GN
    J Exp Biol; 2004 Jun; 207(Pt 13):2237-54. PubMed ID: 15159429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How development and survival combine to determine the thermal sensitivity of insects.
    Abarca M; Parker AL; Larsen EA; Umbanhowar J; Earl C; Guralnick R; Kingsolver J; Ries L
    PLoS One; 2024; 19(1):e0291393. PubMed ID: 38289939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three questions about the eco-physiology of overwintering underground.
    Huey RB; Ma L; Levy O; Kearney MR
    Ecol Lett; 2021 Feb; 24(2):170-185. PubMed ID: 33289263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance.
    Holmstrup M; Sørensen JG; Dai W; Krogh PH; Schmelz RM; Slotsbo S
    J Comp Physiol B; 2022 Jul; 192(3-4):435-445. PubMed ID: 35312816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.