BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38216015)

  • 1. Identification of natural xanthine oxidase inhibitors: Virtual screening, anti-xanthine oxidase activity, and interaction mechanism.
    Yu D; Du J; He P; Wang N; Li L; Liu Y; Yang C; Xu H; Li Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129286. PubMed ID: 38216015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthine oxidase inhibitory peptides derived from tuna protein: virtual screening, inhibitory activity, and molecular mechanisms.
    Yu Z; Kan R; Wu S; Guo H; Zhao W; Ding L; Zheng F; Liu J
    J Sci Food Agric; 2021 Mar; 101(4):1349-1354. PubMed ID: 32820534
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Gul A; Saad SM; Zafar H; Atia-Tul-Wahab ; Khan KM; Choudhary MI
    Med Chem; 2023; 19(4):384-392. PubMed ID: 35726432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.
    Gao J; Liu X; Zhang B; Mao Q; Zhang Z; Zou Q; Dai X; Wang S
    Eur J Med Chem; 2020 Mar; 190():112077. PubMed ID: 32014678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study.
    Zhai N; Wang C; Wu F; Xiong L; Luo X; Ju X; Liu G
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase.
    Lou Y; Gao Q; Fan M; Waleed AA; Wang L; Li Y; Qian H
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126542. PubMed ID: 37634782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.
    Zhang B; Duan Y; Yang Y; Mao Q; Lin F; Gao J; Dai X; Zhang P; Li Q; Li J; Dai R; Wang S
    Eur J Med Chem; 2022 Jan; 227():113928. PubMed ID: 34688012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro.
    Lin S; Zhang G; Pan J; Gong D
    J Photochem Photobiol B; 2015 Dec; 153():463-72. PubMed ID: 26584360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Anti-Hyperuricemic Activity of Xanthine Oxidase Inhibitory Peptides from Pacific White Shrimp and Swimming Crab Based on Molecular Docking Screening.
    Mao Z; Jiang H; Mao X
    J Agric Food Chem; 2023 Jan; 71(3):1620-1627. PubMed ID: 36625439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.
    Wang Y; Zhang G; Pan J; Gong D
    J Agric Food Chem; 2015 Jan; 63(2):526-34. PubMed ID: 25539132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel xanthine oxidase inhibitory peptides derived from whey protein: identification, in vitro inhibition mechanism and in vivo activity validation.
    Qi X; Chen H; Guan K; Sun Y; Wang R; Li Q; Ma Y
    Bioorg Chem; 2022 Nov; 128():106097. PubMed ID: 35985156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the interaction mechanism between luteoloside and xanthine oxidase by multi-spectroscopic and molecular docking methods.
    Chen J; Wang Y; Pan X; Cheng Y; Liu J; Cao X
    J Mol Recognit; 2022 Dec; 35(12):e2985. PubMed ID: 35907782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel xanthine oxidase inhibitors via virtual screening with enhanced characterization of molybdopterin binding groups.
    Zhang L; Tian J; Cheng H; Yang Y; Yang Y; Ye F; Xiao Z
    Eur J Med Chem; 2022 Feb; 230():114101. PubMed ID: 35063733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking.
    Yang Y; Chen Q; Ruan S; Ao J; Liao SG
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro xanthine oxidase inhibitory and in vivo anti-hyperuricemic properties of sodium kaempferol-3'-sulfonate.
    Wang X; Cui Z; Luo Y; Huang Y; Yang X
    Food Chem Toxicol; 2023 Jul; 177():113854. PubMed ID: 37230458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.
    Lin S; Zhang G; Liao Y; Pan J
    Int J Biol Macromol; 2015 Nov; 81():274-82. PubMed ID: 26275460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and biological evaluation of thiazolidine-2-thione derivatives as novel xanthine oxidase inhibitors.
    Wang MX; Qin HW; Liu C; Lv SM; Chen JS; Wang CG; Chen YY; Wang JW; Sun JY; Liao ZX
    PLoS One; 2022; 17(5):e0268531. PubMed ID: 35584139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel 3-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-1,2,4-oxadiazol-5(4H)-ones as promising xanthine oxidase inhibitors: Design, synthesis and biological evaluation.
    Gao J; Zhang Z; Zhang B; Mao Q; Dai X; Zou Q; Lei Y; Feng Y; Wang S
    Bioorg Chem; 2020 Jan; 95():103564. PubMed ID: 31927335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions.
    He W; Su G; Sun-Waterhouse D; Waterhouse GIN; Zhao M; Liu Y
    Food Chem; 2019 Jan; 272():453-461. PubMed ID: 30309568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of porphyra polysaccharide on xanthine oxidase activity and its inhibition mechanism.
    Du H; Li SJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120446. PubMed ID: 34628362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.