BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38216546)

  • 1. Deep Learning-Based Analysis of Aortic Morphology From Three-Dimensional MRI.
    Guo J; Bouaou K; Houriez-Gombaud-Saintonge S; Gueda M; Gencer U; Nguyen V; Charpentier E; Soulat G; Redheuil A; Mousseaux E; Kachenoura N; Dietenbeck T
    J Magn Reson Imaging; 2024 Jan; ():. PubMed ID: 38216546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI.
    Astley JR; Biancardi AM; Marshall H; Hughes PJC; Collier GJ; Smith LJ; Eaden JA; Hughes R; Wild JM; Tahir BA
    J Magn Reson Imaging; 2023 Jun; 57(6):1878-1890. PubMed ID: 36373828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning.
    Berhane H; Scott M; Elbaz M; Jarvis K; McCarthy P; Carr J; Malaisrie C; Avery R; Barker AJ; Robinson JD; Rigsby CK; Markl M
    Magn Reson Med; 2020 Oct; 84(4):2204-2218. PubMed ID: 32167203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor, and Multi-disease Study.
    Astley JR; Biancardi AM; Hughes PJC; Marshall H; Collier GJ; Chan HF; Saunders LC; Smith LJ; Brook ML; Thompson R; Rowland-Jones S; Skeoch S; Bianchi SM; Hatton MQ; Rahman NM; Ho LP; Brightling CE; Wain LV; Singapuri A; Evans RA; Moss AJ; McCann GP; Neubauer S; Raman B; ; Wild JM; Tahir BA
    J Magn Reson Imaging; 2023 Oct; 58(4):1030-1044. PubMed ID: 36799341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network.
    Winter P; Berhane H; Moore JE; Aristova M; Reichl T; Wollenberg J; Richter A; Jarvis KB; Patel A; Caprio FZ; Abdalla RN; Ansari SA; Markl M; Schnell S
    Front Radiol; 2024; 4():1385424. PubMed ID: 38895589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry.
    Schmidt AM; Desai AD; Watkins LE; Crowder HA; Black MS; Mazzoli V; Rubin EB; Lu Q; MacKay JW; Boutin RD; Kogan F; Gold GE; Hargreaves BA; Chaudhari AS
    J Magn Reson Imaging; 2023 Apr; 57(4):1029-1039. PubMed ID: 35852498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation and quantification of the healthy and diseased aorta in CT angiographies using a dedicated deep learning approach.
    Sieren MM; Widmann C; Weiss N; Moltz JH; Link F; Wegner F; Stahlberg E; Horn M; Oecherting TH; Goltz JP; Barkhausen J; Frydrychowicz A
    Eur Radiol; 2022 Jan; 32(1):690-701. PubMed ID: 34170365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning.
    Bustamante M; Viola F; Engvall J; Carlhäll CJ; Ebbers T
    J Magn Reson Imaging; 2023 Jan; 57(1):191-203. PubMed ID: 35506525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided quantification of non-contrast 3D black blood MRI as an efficient alternative to reference standard manual CT angiography measurements of abdominal aortic aneurysms.
    Wang Y; Tian B; Xiong F; Kao E; Zhang Y; Liu X; Tian X; Haraldsson H; Zhu C; Leach J; Liu J; Hope MD; Mitsouras D; Saloner D
    Eur J Radiol; 2021 Jan; 134():109396. PubMed ID: 33217686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative magnetic resonance imaging measures of three-dimensional aortic morphology in healthy aging and hypertension.
    Dietenbeck T; Houriez-Gombaud-Saintonge S; Charpentier E; Gencer U; Giron A; Gallo A; Boussouar S; Pasi N; Soulat G; Mousseaux E; Redheuil A; Kachenoura N
    J Magn Reson Imaging; 2021 May; 53(5):1471-1483. PubMed ID: 33426700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers.
    Juffermans JF; Westenberg JJM; van den Boogaard PJ; Roest AAW; van Assen HC; van der Palen RLF; Lamb HJ
    J Magn Reson Imaging; 2021 Apr; 53(4):1268-1279. PubMed ID: 33179389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D aortic morphology and stiffness in MRI using semi-automated cylindrical active surface provides optimized description of the vascular effects of aging and hypertension.
    Dietenbeck T; Craiem D; Rosenbaum D; Giron A; De Cesare A; Bouaou K; Girerd X; Cluzel P; Redheuil A; Kachenoura N
    Comput Biol Med; 2018 Dec; 103():101-108. PubMed ID: 30347341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for the automatic assessment of aortic rotational flow and wall shear stress from 4D flow cardiac magnetic resonance imaging.
    Garrido-Oliver J; Aviles J; Córdova MM; Dux-Santoy L; Ruiz-Muñoz A; Teixido-Tura G; Maso Talou GD; Morales Ferez X; Jiménez G; Evangelista A; Ferreira-González I; Rodriguez-Palomares J; Camara O; Guala A
    Eur Radiol; 2022 Oct; 32(10):7117-7127. PubMed ID: 35976395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segment aorta and localize landmarks simultaneously on noncontrast CT using a multitask learning framework for patients without severe vascular disease.
    Yang J; Li X; Cheng JZ; Xue Z; Shi F; Ji Y; Wang X; Yang F
    Comput Biol Med; 2023 Jun; 160():107002. PubMed ID: 37187136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automatic volume segmentation of infrarenal abdominal aortic aneurysm computed tomography images with deep learning approaches versus physician controlled manual segmentation.
    Caradu C; Spampinato B; Vrancianu AM; Bérard X; Ducasse E
    J Vasc Surg; 2021 Jul; 74(1):246-256.e6. PubMed ID: 33309556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi-Site, Multi-Vendor, and Multi-Label Dense U-Net.
    Fujiwara T; Berhane H; Scott MB; Englund EK; Schäfer M; Fonseca B; Berthusen A; Robinson JD; Rigsby CK; Browne LP; Markl M; Barker AJ
    J Magn Reson Imaging; 2022 Jun; 55(6):1666-1680. PubMed ID: 34792835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.