These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362 [TBL] [Abstract][Full Text] [Related]
5. Shotgun knockdown of RNA by CRISPR-Cas13d in fission yeast. Chen Z; Zheng S; Fu C J Cell Sci; 2023 Mar; 136(6):. PubMed ID: 36825467 [TBL] [Abstract][Full Text] [Related]
6. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems. Meeske AJ; Marraffini LA Mol Cell; 2018 Sep; 71(5):791-801.e3. PubMed ID: 30122537 [TBL] [Abstract][Full Text] [Related]
7. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis. Wakefield N; Rajan R; Sontheimer EJ FEBS Lett; 2015 Oct; 589(20 Pt B):3197-204. PubMed ID: 26364721 [TBL] [Abstract][Full Text] [Related]
8. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Yan WX; Chong S; Zhang H; Makarova KS; Koonin EV; Cheng DR; Scott DA Mol Cell; 2018 Apr; 70(2):327-339.e5. PubMed ID: 29551514 [TBL] [Abstract][Full Text] [Related]
9. The effects of length and sequence of gRNA on Cas13b and Cas13d activity in vitro and in vivo. Liu Y; Jing P; Zhou Y; Zhang J; Shi J; Zhang M; Yang H; Fei J Biotechnol J; 2023 Sep; 18(9):e2300002. PubMed ID: 37148478 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384 [TBL] [Abstract][Full Text] [Related]
12. Computational Detection of CRISPR/crRNA Targets. Biswas A; Fineran PC; Brown CM Methods Mol Biol; 2015; 1311():77-89. PubMed ID: 25981467 [TBL] [Abstract][Full Text] [Related]
13. Approaches to study CRISPR RNA biogenesis and the key players involved. Behler J; Hess WR Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492 [TBL] [Abstract][Full Text] [Related]
14. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Zhang B; Ye Y; Ye W; Perčulija V; Jiang H; Chen Y; Li Y; Chen J; Lin J; Wang S; Chen Q; Han YS; Ouyang S Nat Commun; 2019 Jun; 10(1):2544. PubMed ID: 31186424 [TBL] [Abstract][Full Text] [Related]
15. CRISPR-Cas13d for Gene Knockdown and Engineering of CHO Cells. Shen CC; Lin MW; Nguyen BKT; Chang CW; Shih JR; Nguyen MTT; Chang YH; Hu YC ACS Synth Biol; 2020 Oct; 9(10):2808-2818. PubMed ID: 32911927 [TBL] [Abstract][Full Text] [Related]
16. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. O'Connell MR J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185 [TBL] [Abstract][Full Text] [Related]
17. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. Brendel J; Stoll B; Lange SJ; Sharma K; Lenz C; Stachler AE; Maier LK; Richter H; Nickel L; Schmitz RA; Randau L; Allers T; Urlaub H; Backofen R; Marchfelder A J Biol Chem; 2014 Mar; 289(10):7164-7177. PubMed ID: 24459147 [TBL] [Abstract][Full Text] [Related]
18. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches. Cheng X; Li Z; Shan R; Li Z; Wang S; Zhao W; Zhang H; Chao L; Peng J; Fei T; Li W Nat Commun; 2023 Feb; 14(1):752. PubMed ID: 36765063 [TBL] [Abstract][Full Text] [Related]
19. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Wessels HH; Stirn A; Méndez-Mancilla A; Kim EJ; Hart SK; Knowles DA; Sanjana NE Nat Biotechnol; 2024 Apr; 42(4):628-637. PubMed ID: 37400521 [TBL] [Abstract][Full Text] [Related]