These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38217331)

  • 21. Transition-Metal-Catalyzed C-C Bond Formation from C-C Activation.
    Song F; Wang B; Shi ZJ
    Acc Chem Res; 2023 Nov; 56(21):2867-2886. PubMed ID: 37882453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides.
    Zhao Z; Liu M; Zhou K; Guo L; Shen Y; Lu D; Hong X; Bao Z; Yang Q; Ren Q; Schreiner PR; Zhang Z
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6982-6989. PubMed ID: 36715584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radical Carboxylative Cyclizations and Carboxylations with CO
    Ye JH; Ju T; Huang H; Liao LL; Yu DG
    Acc Chem Res; 2021 May; 54(10):2518-2531. PubMed ID: 33956436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enantioselective intramolecular hydroarylation of alkenes via directed C-H bond activation.
    Harada H; Thalji RK; Bergman RG; Ellman JA
    J Org Chem; 2008 Sep; 73(17):6772-9. PubMed ID: 18681407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photocatalytic Hydrogen Evolution by a Synthetic [FeFe] Hydrogenase Mimic Encapsulated in a Porphyrin Cage.
    Nurttila SS; Becker R; Hessels J; Woutersen S; Reek JNH
    Chemistry; 2018 Nov; 24(61):16395-16406. PubMed ID: 30117602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings.
    Pan Q; Ping Y; Kong W
    Acc Chem Res; 2023 Mar; 56(5):515-535. PubMed ID: 36688822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encapsulating electron-deficient dyes into metal-organic capsules to achieve high reduction potentials.
    Yuan J; Wei Z; Shen K; Yang Y; Liu M; Jing X; Duan C
    Dalton Trans; 2022 Jul; 51(29):10860-10865. PubMed ID: 35781472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photocatalysis Meets Confinement: An Emerging Opportunity for Photoinduced Organic Transformations.
    Hao Y; Lu YL; Jiao Z; Su CY
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202317808. PubMed ID: 38238997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Component Metal-Organic Frameworks Significantly Boost Visible-Light-Driven Hydrogen Production Coupled with Selective Organic Oxidation.
    Li H; Yang Y; Jing X; He C; Duan C
    Chem Asian J; 2021 May; 16(10):1237-1244. PubMed ID: 33769702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation.
    Smrithi SP; Kottam N; Narula A; Madhu GM; Mohammed R; Agilan R
    J Colloid Interface Sci; 2022 Dec; 627():956-968. PubMed ID: 35901574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Amine-Functionalized Zirconium Metal-Organic Polyhedron Photocatalyst with High Visible-Light Activity for Hydrogen Production.
    Sun M; Wang QQ; Qin C; Sun CY; Wang XL; Su ZM
    Chemistry; 2019 Feb; 25(11):2824-2830. PubMed ID: 30575148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Making Use of the δ Electrons in K
    Liu X; Su S; Zhu GY; Shu Y; Gao Q; Meng M; Cheng T; Liu CY
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24006-24017. PubMed ID: 31241882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iodanyl Radical Catalysis.
    Maity A; Frey BL; Powers DC
    Acc Chem Res; 2023 Jul; 56(14):2026-2036. PubMed ID: 37409761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal-organic framework via two-photon absorption.
    Tang JH; Han G; Li G; Yan K; Sun Y
    iScience; 2022 Apr; 25(4):104064. PubMed ID: 35355522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.