These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 38217351)

  • 21. Artificial intelligence in clinical and genomic diagnostics.
    Dias R; Torkamani A
    Genome Med; 2019 Nov; 11(1):70. PubMed ID: 31744524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.
    Li Z; Sillanpää MJ
    Trends Plant Sci; 2015 Dec; 20(12):822-833. PubMed ID: 26482958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency.
    van Bezouw RFHM; Keurentjes JJB; Harbinson J; Aarts MGM
    Plant J; 2019 Jan; 97(1):112-133. PubMed ID: 30548574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat.
    Ren A; Jiang D; Kang M; Wu J; Xiao F; Hou P; Fu X
    Plant Methods; 2022 Jun; 18(1):77. PubMed ID: 35672714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mining Plant Genomic and Genetic Data Using the GnpIS Information System.
    Adam-Blondon AF; Alaux M; Durand S; Letellier T; Merceron G; Mohellibi N; Pommier C; Steinbach D; Alfama F; Amselem J; Charruaud D; Choisne N; Flores R; Guerche C; Jamilloux V; Kimmel E; Lapalu N; Loaec M; Michotey C; Quesneville H
    Methods Mol Biol; 2017; 1533():103-117. PubMed ID: 27987166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opportunity and challenges of phenotyping plant salt tolerance.
    Hu Y; Schmidhalter U
    Trends Plant Sci; 2023 May; 28(5):552-566. PubMed ID: 36628656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput plant phenotyping: a role for metabolomics?
    Hall RD; D'Auria JC; Silva Ferreira AC; Gibon Y; Kruszka D; Mishra P; van de Zedde R
    Trends Plant Sci; 2022 Jun; 27(6):549-563. PubMed ID: 35248492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The "GEnomics of Musculo Skeletal Traits TranslatiOnal NEtwork": Origins, Rationale, Organization, and Prospects.
    Koromani F; Alonso N; Alves I; Brandi ML; Foessl I; Formosa MM; Morgenstern MF; Karasik D; Kolev M; Makitie O; Ntzani E; Pietsch BO; Ohlsson C; Rauner M; Soe K; Soldatovic I; Teti A; Valjevac A; Rivadeneira F
    Front Endocrinol (Lausanne); 2021; 12():709815. PubMed ID: 34484122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary and ecological functional genomics, from lab to the wild.
    Zaidem ML; Groen SC; Purugganan MD
    Plant J; 2019 Jan; 97(1):40-55. PubMed ID: 30444573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of artificial intelligence in clinical laboratory genomics.
    Aradhya S; Facio FM; Metz H; Manders T; Colavin A; Kobayashi Y; Nykamp K; Johnson B; Nussbaum RL
    Am J Med Genet C Semin Med Genet; 2023 Sep; 193(3):e32057. PubMed ID: 37507620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Science for the Next Century: Deep Phenotyping.
    Wright JT; Herzberg MC
    J Dent Res; 2021 Jul; 100(8):785-789. PubMed ID: 33749358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bridging the gene-to-function knowledge gap through functional genomics.
    Robinson SJ; Parkin IA
    Methods Mol Biol; 2009; 513():153-73. PubMed ID: 19347643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New strategies on the application of artificial intelligence in the field of phytoremediation.
    Singh P; Pani A; Mujumdar AS; Shirkole SS
    Int J Phytoremediation; 2023; 25(4):505-523. PubMed ID: 35802802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computable visually observed phenotype ontological framework for plants.
    Harnsomburana J; Green JM; Barb AS; Schaeffer M; Vincent L; Shyu CR
    BMC Bioinformatics; 2011 Jun; 12():260. PubMed ID: 21702966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Future scenarios for plant phenotyping.
    Fiorani F; Schurr U
    Annu Rev Plant Biol; 2013; 64():267-91. PubMed ID: 23451789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revolutionizing Biological Science: The Synergy of Genomics in Health, Bioinformatics, Agriculture, and Artificial Intelligence.
    Biswas A; Kumari A; Gaikwad DS; Pandey DK
    OMICS; 2023 Dec; 27(12):550-569. PubMed ID: 38100404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review.
    Xiao Q; Bai X; Zhang C; He Y
    J Adv Res; 2022 Jan; 35():215-230. PubMed ID: 35003802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial intelligence, physiological genomics, and precision medicine.
    Williams AM; Liu Y; Regner KR; Jotterand F; Liu P; Liang M
    Physiol Genomics; 2018 Apr; 50(4):237-243. PubMed ID: 29373082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies.
    Yang W; Duan L; Chen G; Xiong L; Liu Q
    Curr Opin Plant Biol; 2013 May; 16(2):180-7. PubMed ID: 23578473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.