These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 38217351)

  • 41. From Classical to Modern Computational Approaches to Identify Key Genetic Regulatory Components in Plant Biology.
    Acién JM; Cañizares E; Candela H; González-Guzmán M; Arbona V
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Benchmarking Parametric and Machine Learning Models for Genomic Prediction of Complex Traits.
    Azodi CB; Bolger E; McCarren A; Roantree M; de Los Campos G; Shiu SH
    G3 (Bethesda); 2019 Nov; 9(11):3691-3702. PubMed ID: 31533955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Opportunities and Challenges with Artificial Intelligence in Genomics.
    Kurant DE
    Clin Lab Med; 2023 Mar; 43(1):87-97. PubMed ID: 36764810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning meets omics: applications and perspectives.
    Li R; Li L; Xu Y; Yang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leveraging artificial intelligence to advance implementation science: potential opportunities and cautions.
    Trinkley KE; An R; Maw AM; Glasgow RE; Brownson RC
    Implement Sci; 2024 Feb; 19(1):17. PubMed ID: 38383393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture.
    Cembrowska-Lech D; Krzemińska A; Miller T; Nowakowska A; Adamski C; Radaczyńska M; Mikiciuk G; Mikiciuk M
    Biology (Basel); 2023 Sep; 12(10):. PubMed ID: 37887008
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New technologies for 21st century plant science.
    Ehrhardt DW; Frommer WB
    Plant Cell; 2012 Feb; 24(2):374-94. PubMed ID: 22366161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of the importance of auxiliary traits using computational intelligence and machine learning: A simulation study.
    da Silva Júnior AC; Silva MJD; Cruz CD; Sant'Anna IC; Silva GN; Nascimento M; Azevedo CF
    PLoS One; 2021; 16(11):e0257213. PubMed ID: 34843488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine learning for Big Data analytics in plants.
    Ma C; Zhang HH; Wang X
    Trends Plant Sci; 2014 Dec; 19(12):798-808. PubMed ID: 25223304
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional genomics complements quantitative genetics in identifying disease-gene associations.
    Guan Y; Ackert-Bicknell CL; Kell B; Troyanskaya OG; Hibbs MA
    PLoS Comput Biol; 2010 Nov; 6(11):e1000991. PubMed ID: 21085640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth dynamics and heritability for plant high-throughput phenotyping studies using hierarchical functional data analysis.
    Xu Y; Li Y; Qiu Y
    Biom J; 2021 Aug; 63(6):1325-1341. PubMed ID: 33830499
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning approaches and their current application in plant molecular biology: A systematic review.
    Silva JCF; Teixeira RM; Silva FF; Brommonschenkel SH; Fontes EPB
    Plant Sci; 2019 Jul; 284():37-47. PubMed ID: 31084877
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational and Experimental Tools to Monitor the Changes in Translation Efficiency of Plant mRNA on a Genome-Wide Scale: Advantages, Limitations, and Solutions.
    Goldenkova-Pavlova IV; Pavlenko OS; Mustafaev ON; Deyneko IV; Kabardaeva KV; Tyurin AA
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Statistical Methods for the Quantitative Genetic Analysis of High-Throughput Phenotyping Data.
    Morota G; Jarquin D; Campbell MT; Iwata H
    Methods Mol Biol; 2022; 2539():269-296. PubMed ID: 35895210
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in plant genome sequencing.
    Hamilton JP; Buell CR
    Plant J; 2012 Apr; 70(1):177-90. PubMed ID: 22449051
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.
    Li S; Kang L; Zhao XM
    Biomed Res Int; 2014; 2014():362738. PubMed ID: 24729969
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ontologies as integrative tools for plant science.
    Walls RL; Athreya B; Cooper L; Elser J; Gandolfo MA; Jaiswal P; Mungall CJ; Preece J; Rensing S; Smith B; Stevenson DW
    Am J Bot; 2012 Aug; 99(8):1263-75. PubMed ID: 22847540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From lab to field, new approaches to phenotyping root system architecture.
    Zhu J; Ingram PA; Benfey PN; Elich T
    Curr Opin Plant Biol; 2011 Jun; 14(3):310-7. PubMed ID: 21530367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenomic Approaches and Tools for Phytopathologists.
    Simko I; Jimenez-Berni JA; Sirault XR
    Phytopathology; 2017 Jan; 107(1):6-17. PubMed ID: 27618193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.