BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38217373)

  • 1. DNA Crosslinked Mucin Hydrogels Allow for On-Demand Gel Disintegration and Triggered Particle Release.
    Henkel M; Kimna C; Lieleg O
    Macromol Biosci; 2024 Apr; 24(4):e2300427. PubMed ID: 38217373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery.
    Duffy CV; David L; Crouzier T
    Acta Biomater; 2015 Jul; 20():51-59. PubMed ID: 25818947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Click chemistry-based biopolymeric hydrogels for regenerative medicine.
    Li Y; Wang X; Han Y; Sun HY; Hilborn J; Shi L
    Biomed Mater; 2021 Mar; 16(2):022003. PubMed ID: 33049725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable and Self-Healing Hydrogels with Double-Dynamic Bond Tunable Mechanical, Gel-Sol Transition and Drug Delivery Properties for Promoting Periodontium Regeneration in Periodontitis.
    Guo H; Huang S; Yang X; Wu J; Kirk TB; Xu J; Xu A; Xue W
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61638-61652. PubMed ID: 34908393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy.
    Obuobi S; Tay HK; Tram NDT; Selvarajan V; Khara JS; Wang Y; Ee PLR
    J Control Release; 2019 Nov; 313():120-130. PubMed ID: 31629042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rational approach to form disulfide linked mucin hydrogels.
    Joyner K; Song D; Hawkins RF; Silcott RD; Duncan GA
    Soft Matter; 2019 Dec; 15(47):9632-9639. PubMed ID: 31651920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Hydrogels: Introduction to the World of Smart Materials for Biomedical Applications.
    Pepelanova I
    Adv Biochem Eng Biotechnol; 2021; 178():1-35. PubMed ID: 33903929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine.
    Sahajpal K; Shekhar S; Kumar A; Sharma B; Meena MK; Bhagi AK; Sharma S
    J Mater Chem B; 2022 May; 10(17):3173-3198. PubMed ID: 35352081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioresponsive DNA Hydrogels: Beyond the Conventional Stimuli Responsiveness.
    Wang D; Hu Y; Liu P; Luo D
    Acc Chem Res; 2017 Apr; 50(4):733-739. PubMed ID: 28186723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels.
    Morton LD; Castilla-Casadiego DA; Palmer AC; Rosales AM
    Acta Biomater; 2023 Jan; 155():258-270. PubMed ID: 36423819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties.
    Rickert CA; Mansi S; Fan D; Mela P; Lieleg O
    Macromol Biosci; 2023 Nov; 23(11):e2300198. PubMed ID: 37466113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose: a fascinating biopolymer for hydrogel synthesis.
    Bhaladhare S; Das D
    J Mater Chem B; 2022 Mar; 10(12):1923-1945. PubMed ID: 35226030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Selective Mucin/Methylcellulose Hybrid Gel with Tailored Mechanical Properties.
    Nowald C; Penk A; Chiu HY; Bein T; Huster D; Lieleg O
    Macromol Biosci; 2016 Apr; 16(4):567-79. PubMed ID: 26748668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biopolymeric hydrogels - nanostructured TiO
    Zazakowny K; Lewandowska-Łańcucka J; Mastalska-Popławska J; Kamiński K; Kusior A; Radecka M; Nowakowska M
    Colloids Surf B Biointerfaces; 2016 Dec; 148():607-614. PubMed ID: 27694050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.
    Suriano R; Griffini G; Chiari M; Levi M; Turri S
    J Mech Behav Biomed Mater; 2014 Feb; 30():339-46. PubMed ID: 24368174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity.
    Mout R; Bretherton RC; Decarreau J; Lee S; Gregorio N; Edman NI; Ahlrichs M; Hsia Y; Sahtoe DD; Ueda G; Sharma A; Schulman R; DeForest CA; Baker D
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2309457121. PubMed ID: 38289949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adsorption chromatography assay to probe bulk particle transport through hydrogels.
    Vladescu I; Lieleg O; Jang S; Ribbeck K
    J Pharm Sci; 2012 Jan; 101(1):436-42. PubMed ID: 21905030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.