BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38217455)

  • 1. Automatic Segmentation of Membranous Glottal Gap Area with U-Net-Based Architecture.
    Hackman A; Chen CH; Chen AW; Chen MK
    Laryngoscope; 2024 Jun; 134(6):2835-2843. PubMed ID: 38217455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glottal Gap tracking by a continuous background modeling using inpainting.
    Andrade-Miranda G; Godino-Llorente JI
    Med Biol Eng Comput; 2017 Dec; 55(12):2123-2141. PubMed ID: 28550413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J
    PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated glottis segmentation in endoscopic videos using local color and shape features of glottal regions.
    Gloger O; Lehnert B; Schrade A; Völzke H
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):795-806. PubMed ID: 25350912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intersegmenter Variability in High-Speed Laryngoscopy-Based Glottal Area Waveform Measures.
    Maryn Y; Verguts M; Demarsin H; van Dinther J; Gomez P; Schlegel P; Döllinger M
    Laryngoscope; 2020 Nov; 130(11):E654-E661. PubMed ID: 31840827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonation Threshold Pressure/Flow for Reflecting Glottal Closure in Unilateral Vocal Fold Paralysis.
    Jen JH; Chan RW; Wu CH; Wang CT
    Laryngoscope; 2021 May; 131(5):E1598-E1604. PubMed ID: 33232528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic recognizing of vocal fold disorders from glottis images.
    Huang CC; Leu YS; Kuo CF; Chu WL; Chu YH; Wu HC
    Proc Inst Mech Eng H; 2014 Sep; 228(9):952-61. PubMed ID: 25313026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
    Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R
    J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of thyroplasty type I on vocal fold vibration.
    Omori K; Slavit DH; Kacker A; Blaugrund SM; Kojima H
    Laryngoscope; 2000 Jul; 110(7):1086-91. PubMed ID: 10892675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation.
    Gómez P; Kist AM; Schlegel P; Berry DA; Chhetri DK; Dürr S; Echternach M; Johnson AM; Kniesburges S; Kunduk M; Maryn Y; Schützenberger A; Verguts M; Döllinger M
    Sci Data; 2020 Jun; 7(1):186. PubMed ID: 32561845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.
    Niebudek-Bogusz E; Kopczynski B; Strumillo P; Morawska J; Wiktorowicz J; Sliwinska-Kowalska M
    Logoped Phoniatr Vocol; 2017 Jul; 42(2):73-83. PubMed ID: 27132636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualification of a quantitative laryngeal imaging system using videostroboscopy and videokymography.
    Popolo PS; Titze IR
    Ann Otol Rhinol Laryngol; 2008 Jun; 117(6):404-12. PubMed ID: 18646436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The membranous contact quotient: a new phonatory measure of glottal competence.
    Scherer RC; Alipour F; Finnegan E; Guo CG
    J Voice; 1997 Sep; 11(3):277-84. PubMed ID: 9297671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single latent channel is sufficient for biomedical glottis segmentation.
    Kist AM; Breininger K; Dörrich M; Dürr S; Schützenberger A; Semmler M
    Sci Rep; 2022 Aug; 12(1):14292. PubMed ID: 35995933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphical evaluation of vocal fold vibratory patterns by high-speed videolaryngoscopy.
    Pinheiro AP; Dajer ME; Hachiya A; Montagnoli AN; Tsuji D
    J Voice; 2014 Jan; 28(1):106-11. PubMed ID: 24275457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of size and etiology of glottal gap in glottic incompetence dysphonia.
    Omori K; Slavit DH; Kacker A; Blaugrund SM
    Laryngoscope; 1998 Apr; 108(4 Pt 1):514-8. PubMed ID: 9546262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and quantification of glottal gaps on deep learning segmentation of vocal folds.
    Pedersen M; Larsen CF; Madsen B; Eeg M
    Sci Rep; 2023 Jan; 13(1):878. PubMed ID: 36650265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.