These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38217496)

  • 1. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses.
    Bertani M; Charpentier T; Faglioni F; Pedone A
    J Chem Theory Comput; 2024 Feb; 20(3):1358-1370. PubMed ID: 38217496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials.
    Di Tommaso D; Ainsworth RI; Tang E; de Leeuw NH
    J Mater Chem B; 2013 Oct; 1(38):5054-5066. PubMed ID: 32261096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a ReaxFF reactive force field for ternary phosphate-based bioactive glasses.
    Fallah Z; Christi JK
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38738608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New interaction potentials for alkali and alkaline-earth aluminosilicate glasses.
    Sundararaman S; Huang L; Ispas S; Kob W
    J Chem Phys; 2019 Apr; 150(15):154505. PubMed ID: 31005086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation of Amorphous SiO
    Sahu P; Pente AA; Singh MD; Chowdhri IA; Sharma K; Goswami M; Ali SM; Shenoy KT; Mohan S
    J Phys Chem B; 2019 Jul; 123(29):6290-6302. PubMed ID: 31247137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Network Connectivity of Silicate and Sodium Borosilicate Glasses by TiO
    Sahu P; Ali SM
    Langmuir; 2022 Jun; 38(24):7639-7663. PubMed ID: 35678225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep machine learning interatomic potential for liquid silica.
    Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA
    Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the pair correlation functions of silicate and borosilicate glasses using machine learning.
    Ayush K; Sahu P; Ali SM; Patra TK
    Phys Chem Chem Phys; 2024 Jan; 26(2):1094-1104. PubMed ID: 38098432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative training set refinement enables reactive molecular dynamics
    Chen L; Sukuba I; Probst M; Kaiser A
    RSC Adv; 2020 Jan; 10(8):4293-4299. PubMed ID: 35495270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Water Reactive Potentials for Sodium Silicate Glasses.
    Mahadevan TS; Sun W; Du J
    J Phys Chem B; 2019 May; 123(20):4452-4461. PubMed ID: 31033296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition Dependence of the Atomic Structures and Properties of Sodium Aluminosilicate Glasses: Molecular Dynamics Simulations with Reactive and Nonreactive Potentials.
    Kalahe J; Ono M; Urata S; Du J
    J Phys Chem B; 2022 Jul; 126(28):5326-5342. PubMed ID: 35822860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Diffusion Monte Carlo Forces.
    Huang C; Rubenstein BM
    J Phys Chem A; 2023 Jan; 127(1):339-355. PubMed ID: 36576803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics.
    Tilocca A
    J Chem Phys; 2013 Sep; 139(11):114501. PubMed ID: 24070291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-composition trends in multicomponent borosilicate-based glasses deduced from molecular dynamics simulations with improved B-O and P-O force fields.
    Stevensson B; Yu Y; Edén M
    Phys Chem Chem Phys; 2018 Mar; 20(12):8192-8209. PubMed ID: 29522058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Chemical Approach toward Understanding the Aqueous Corrosion of Sodium Aluminoborate Glasses.
    Kapoor S; Youngman RE; Zakharchuk K; Yaremchenko A; Smith NJ; Goel A
    J Phys Chem B; 2018 Dec; 122(48):10913-10927. PubMed ID: 30403142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations.
    Stevensson B; Mathew R; Edén M
    J Phys Chem B; 2014 Jul; 118(29):8863-76. PubMed ID: 24967834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information.
    Unke OT; Meuwly M
    J Chem Phys; 2018 Jun; 148(24):241708. PubMed ID: 29960298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.
    Deng L; Du J
    J Chem Phys; 2018 Jan; 148(2):024504. PubMed ID: 29331143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.