These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38217653)
1. RNA Double-Helix Hybridization Measured by Fluorescence Correlation Spectroscopy. Werner A Methods Mol Biol; 2024; 2741():175-181. PubMed ID: 38217653 [TBL] [Abstract][Full Text] [Related]
2. RNA double strand hybridization measured at the single molecule level. Werner A Anal Biochem; 2023 Jan; 660():114959. PubMed ID: 36341770 [TBL] [Abstract][Full Text] [Related]
3. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Takahashi S; Sugimoto N Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181 [TBL] [Abstract][Full Text] [Related]
4. Structures of two RNA octamers containing tandem G.A base pairs. Jang SB; Baeyens K; Jeong MS; SantaLucia J; Turner D; Holbrook SR Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):829-35. PubMed ID: 15103128 [TBL] [Abstract][Full Text] [Related]
5. Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: implications for DNA hybridization. Einert TR; Orland H; Netz RR Eur Phys J E Soft Matter; 2011 Jun; 34(6):55. PubMed ID: 21626368 [TBL] [Abstract][Full Text] [Related]
6. A rule of seven in Watson-Crick base-pairing of mismatched sequences. Cisse II; Kim H; Ha T Nat Struct Mol Biol; 2012 May; 19(6):623-7. PubMed ID: 22580558 [TBL] [Abstract][Full Text] [Related]
7. An overview on the interaction of phenazinium dye phenosafranine to RNA triple and double helices. Pradhan AB; Mondal HK; Haque L; Bhuiya S; Das S Int J Biol Macromol; 2016 May; 86():345-51. PubMed ID: 26812106 [TBL] [Abstract][Full Text] [Related]
8. RNA dimerization monitored by fluorescence correlation spectroscopy. Werner A; Skakun VV; Meyer C; Hahn U Eur Biophys J; 2011 Aug; 40(8):907-21. PubMed ID: 21674181 [TBL] [Abstract][Full Text] [Related]
9. Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA. Marin VL; Armitage BA Biochemistry; 2006 Feb; 45(6):1745-54. PubMed ID: 16460021 [TBL] [Abstract][Full Text] [Related]
10. NMR structure of the mature dimer initiation complex of HIV-1 genomic RNA. Mujeeb A; Parslow TG; Zarrinpar A; Das C; James TL FEBS Lett; 1999 Sep; 458(3):387-92. PubMed ID: 10570946 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Zhan X; Deng L; Chen G Biopolymers; 2022 Feb; 113(2):e23476. PubMed ID: 34581432 [TBL] [Abstract][Full Text] [Related]
12. Unambiguous structure characterization of a DNA-RNA triple helix by 15N- and 13C-filtered NOESY spectroscopy. van Dongen MJ; Heus HA; Wymenga SS; van der Marel GA; van Boom JH; Hilbers CW Biochemistry; 1996 Feb; 35(6):1733-9. PubMed ID: 8639652 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. Moriyama H; Horiuchi H; Koga R; Fukuhara T J Biol Chem; 1999 Mar; 274(11):6882-8. PubMed ID: 10066741 [TBL] [Abstract][Full Text] [Related]
14. Detection of dsRNA with Fluorescence In Situ Hybridization (FISH). Zhou W; Huang J; Yang X; Zhang X Methods Mol Biol; 2024; 2771():35-38. PubMed ID: 38285388 [TBL] [Abstract][Full Text] [Related]
15. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
16. A base-pairing model of duplex formation. I. Watson-Crick pairing geometries. Bashford JD; Jarvis PD Biopolymers; 2005 Aug; 78(6):287-97. PubMed ID: 15834953 [TBL] [Abstract][Full Text] [Related]
17. Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes. Chen CL; Perasso R; Qu LH; Amar L J Mol Biol; 2007 Jun; 369(3):771-83. PubMed ID: 17459411 [TBL] [Abstract][Full Text] [Related]
18. Evolution of Hybridization Probes to DNA Machines and Robots. Kolpashchikov DM Acc Chem Res; 2019 Jul; 52(7):1949-1956. PubMed ID: 31243970 [TBL] [Abstract][Full Text] [Related]
19. Topological constraints in nucleic acid hybridization kinetics. Bois JS; Venkataraman S; Choi HM; Spakowitz AJ; Wang ZG; Pierce NA Nucleic Acids Res; 2005; 33(13):4090-5. PubMed ID: 16043632 [TBL] [Abstract][Full Text] [Related]
20. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]