These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase. Ong AAL; Toh DK; Patil KM; Meng Z; Yuan Z; Krishna MS; Devi G; Haruehanroengra P; Lu Y; Xia K; Okamura K; Sheng J; Chen G Biochemistry; 2019 Mar; 58(10):1319-1331. PubMed ID: 30775913 [TBL] [Abstract][Full Text] [Related]
24. Bulged adenosine influence on the RNA duplex conformation in solution. Popenda L; Adamiak RW; Gdaniec Z Biochemistry; 2008 May; 47(18):5059-67. PubMed ID: 18399645 [TBL] [Abstract][Full Text] [Related]
25. A four-base paired genetic helix with expanded size. Liu H; Gao J; Lynch SR; Saito YD; Maynard L; Kool ET Science; 2003 Oct; 302(5646):868-71. PubMed ID: 14593180 [TBL] [Abstract][Full Text] [Related]
26. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Liu D; Geary CW; Chen G; Shao Y; Li M; Mao C; Andersen ES; Piccirilli JA; Rothemund PWK; Weizmann Y Nat Chem; 2020 Mar; 12(3):249-259. PubMed ID: 31959958 [TBL] [Abstract][Full Text] [Related]
27. Complementary large loops determine the rate of RNA duplex formation in vitro in the case of an effective antisense RNA directed against the human immunodeficiency virus type 1. Homann M; Rittner K; Sczakiel G J Mol Biol; 1993 Sep; 233(1):7-15. PubMed ID: 8377194 [TBL] [Abstract][Full Text] [Related]
28. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone. Kumar P; Sharma PK; Madsen CS; Petersen M; Nielsen P Chembiochem; 2013 Jun; 14(9):1072-4. PubMed ID: 23712945 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and properties of the simplified nucleic acid glycol nucleic acid. Meggers E; Zhang L Acc Chem Res; 2010 Aug; 43(8):1092-102. PubMed ID: 20405911 [TBL] [Abstract][Full Text] [Related]
30. Conservative replication of double-stranded RNA in Saccharomyces cerevisiae by displacement of progeny single strands. Sclafani RA; Fangman WL Mol Cell Biol; 1984 Aug; 4(8):1618-26. PubMed ID: 6387443 [TBL] [Abstract][Full Text] [Related]
31. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Baeyens KJ; De Bondt HL; Holbrook SR Nat Struct Biol; 1995 Jan; 2(1):56-62. PubMed ID: 7719854 [TBL] [Abstract][Full Text] [Related]
32. Structural and functional analysis of separated strands of killer double-stranded RNA of yeast. Thiele DJ; Leibowitz MJ Nucleic Acids Res; 1982 Nov; 10(21):6903-18. PubMed ID: 6757869 [TBL] [Abstract][Full Text] [Related]
33. Triple Helix Formation in a Topologically Controlled DNA Nanosystem. Yamagata Y; Emura T; Hidaka K; Sugiyama H; Endo M Chemistry; 2016 Apr; 22(16):5494-8. PubMed ID: 26938310 [TBL] [Abstract][Full Text] [Related]
34. Molecular characterization of a single mitochondria-associated double-stranded RNA in the green alga Bryopsis. Koga R; Fukuhara T; Nitta T Plant Mol Biol; 1998 Mar; 36(5):717-24. PubMed ID: 9526504 [TBL] [Abstract][Full Text] [Related]
36. Double-Headed 2'-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson-Crick Base Pairs. Beck KM; Nielsen P J Org Chem; 2022 Apr; 87(8):5113-5124. PubMed ID: 35363467 [TBL] [Abstract][Full Text] [Related]
37. Molecular cloning and characterization of W double-stranded RNA, a linear molecule present in Saccharomyces cerevisiae. Identification of its single-stranded RNA form as 20 S RNA. Rodriguez-Cousiño N; Esteban LM; Esteban R J Biol Chem; 1991 Jul; 266(19):12772-8. PubMed ID: 2061340 [TBL] [Abstract][Full Text] [Related]
38. Structural characterization of an intramolecular RNA triple helix by NMR spectroscopy. Klinck R; Liquier J; Taillandier E; Gouyette C; Huynh-Dinh T; Guittet E Eur J Biochem; 1995 Oct; 233(2):544-53. PubMed ID: 7588800 [TBL] [Abstract][Full Text] [Related]
39. Double-headed nucleotides with arabino configuration: synthesis and hybridization properties. Kumar P; Sharma PK; Nielsen P J Org Chem; 2014 Dec; 79(23):11534-40. PubMed ID: 25375974 [TBL] [Abstract][Full Text] [Related]
40. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]