BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38217992)

  • 1. Naked-eye rapid recognition of tyrosine enantiomers using silver triangular nanoplates as colorimetric probe.
    Zhang M; Shi X; Zhang G; Xu C; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123874. PubMed ID: 38217992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual chiral recognition of D/L-leucine using cube-shaped gold nanoparticles as colorimetric probes.
    Zhou X; Xu C; Jin Y; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117263. PubMed ID: 31247465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates.
    Wu P; Hu F; Wang R; Gao L; Huang T; Xin Y; He H
    Amino Acids; 2018 Sep; 50(9):1269-1278. PubMed ID: 29961142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L; Xu C; Liu C; Li B
    Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates.
    Yang XH; Ling J; Peng J; Cao QE; Ding ZT; Bian LC
    Anal Chim Acta; 2013 Oct; 798():74-81. PubMed ID: 24070486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent and Colorimetric Dual-signal Enantiomers Recognition via Enzyme Catalysis: The Case of Glucose Enantiomers Using Nitrogen-doped Silicon Quantum Dots/Silver Probe Coupled with β-D-Glucose Oxidase.
    Yi Y; Liu L; Wu Y; Zhu G
    Anal Sci; 2021 Feb; 37(2):275-281. PubMed ID: 32863333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles.
    Yang J; Li X; Du Y; Ma M; Zhang L; Zhang J; Li P
    Amino Acids; 2021 Feb; 53(2):195-204. PubMed ID: 33432455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanorods as Visual Sensing Platform for Chiral Recognition with Naked Eyes.
    Wang Y; Zhou X; Xu C; Jin Y; Li B
    Sci Rep; 2018 Mar; 8(1):5296. PubMed ID: 29593267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles.
    Zhang M; Ye BC
    Anal Chem; 2011 Mar; 83(5):1504-9. PubMed ID: 21302899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral recognition of tyrosine enantiomers based on decreased resonance scattering signals with silver nanoparticles as optical sensor.
    Tan X; Li Q; Shen Y; Wu H; Zhao Y; Yang J
    Chirality; 2015 Mar; 27(3):194-8. PubMed ID: 25502362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and Sensitive Determination of Bioflavonoids Using a New Analytical System Based on Label-Free Silver Triangular Nanoplates.
    Furletov A; Apyari V; Garshev A; Dmitrienko S; Zolotov Y
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-cysteine capped silver nanoparticles as chiral recognition sensor for ketoprofen enantiomers.
    Obaid A; Mohd Jamil AK; Saharin SM; Mohamad S
    Chirality; 2021 Nov; 33(11):810-823. PubMed ID: 34486177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A universal strategy for visual chiral recognition of α-amino acids with L-tartaric acid-capped gold nanoparticles as colorimetric probes.
    Song G; Zhou F; Xu C; Li B
    Analyst; 2016 Feb; 141(4):1257-65. PubMed ID: 26759834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches.
    Jafari M; Tashkhourian J; Absalan G
    Talanta; 2018 Feb; 178():870-878. PubMed ID: 29136908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEGylated NALC-functionalized gold nanoparticles for colorimetric discrimination of chiral tyrosine.
    Chen XY; Ha W; Jin XJ; Shi YP
    Analyst; 2020 Nov; 145(22):7397-7405. PubMed ID: 32935670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam.
    Furletov A; Apyari V; Volkov P; Torocheshnikova I; Dmitrienko S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyte-induced photoreduction method for visual and colorimetric detection of tyrosine.
    Satheeshkumar E; Yang J
    Anal Chim Acta; 2015 Jun; 879():111-7. PubMed ID: 26002485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultratrace Naked-Eye Colorimetric Ratio Assay of Chromium(III) Ion in Aqueous Solution via Stimuli-Responsive Morphological Transformation of Silver Nanoflakes.
    Li X; Zhang S; Dang Y; Liu Z; Zhang Z; Shan D; Zhang X; Wang T; Lu X
    Anal Chem; 2019 Mar; 91(6):4031-4038. PubMed ID: 30802033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric discrimination and spectroscopic detection of tyrosine enantiomers based on melamine induced aggregation of l-cysteine/Au nanoparticles.
    Chen H; Luo Y; Cai W; Xu L; Li J; Kong Y
    Talanta; 2024 May; 271():125758. PubMed ID: 38340415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic gas extraction of iodine in combination with a silver triangular nanoplate-modified paper strip for colorimetric determination of iodine and of iodine-interacting compounds.
    Gorbunova MO; Baulina AA; Kulyaginova MS; Apyari VV; Furletov AA; Volkov PA; Bochenkov VE; Starukhin AS; Dmitrienko SG
    Mikrochim Acta; 2019 Feb; 186(3):188. PubMed ID: 30771108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.