These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38218395)

  • 1. Genome engineering of the human gut microbiome.
    Zheng L; Shen J; Chen R; Hu Y; Zhao W; Leung EL; Dai L
    J Genet Genomics; 2024 May; 51(5):479-491. PubMed ID: 38218395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Engineering of Resident Bacteria in the Gut Microbiome.
    Arnold J; Glazier J; Mimee M
    J Bacteriol; 2023 Jul; 205(7):e0012723. PubMed ID: 37382533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial community structure alterations within the colorectal cancer gut microbiome.
    Loftus M; Hassouneh SA; Yooseph S
    BMC Microbiol; 2021 Mar; 21(1):98. PubMed ID: 33789570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging Commensal Microbiota and Pathogenic Bacteria in the Gut.
    Lin L; Du Y; Song J; Wang W; Yang C
    Acc Chem Res; 2021 May; 54(9):2076-2087. PubMed ID: 33856204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering commensal bacteria to rewire host-microbiome interactions.
    Hwang IY; Chang MW
    Curr Opin Biotechnol; 2020 Apr; 62():116-122. PubMed ID: 31654857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the microbiome: advances in genetic manipulation for gut bacteria.
    Chen Z; Jin W; Hoover A; Chao Y; Ma Y
    Trends Microbiol; 2023 Nov; 31(11):1143-1161. PubMed ID: 37394299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota.
    Magnúsdóttir S; Heinken A; Kutt L; Ravcheev DA; Bauer E; Noronha A; Greenhalgh K; Jäger C; Baginska J; Wilmes P; Fleming RM; Thiele I
    Nat Biotechnol; 2017 Jan; 35(1):81-89. PubMed ID: 27893703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids.
    Leonard SP; Perutka J; Powell JE; Geng P; Richhart DD; Byrom M; Kar S; Davies BW; Ellington AD; Moran NA; Barrick JE
    ACS Synth Biol; 2018 May; 7(5):1279-1290. PubMed ID: 29608282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species.
    Fietz K; Rye Hintze CO; Skovrind M; Kjærgaard Nielsen T; Limborg MT; Krag MA; Palsbøll PJ; Hestbjerg Hansen L; Rask Møller P; Gilbert MTP
    Microbiome; 2018 May; 6(1):82. PubMed ID: 29720271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale phage cultivation for commensal human gut bacteria.
    Shen J; Zhang J; Mo L; Li Y; Li Y; Li C; Kuang X; Tao Z; Qu Z; Wu L; Chen J; Liu S; Zeng L; He Z; Chen Z; Deng Y; Zhang T; Li B; Dai L; Ma Y
    Cell Host Microbe; 2023 Apr; 31(4):665-677.e7. PubMed ID: 37054680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Insights into Antimicrobial Resistance Traits of Commensal Human Gut Microbiota.
    Bag S; Ghosh TS; Banerjee S; Mehta O; Verma J; Dayal M; Desigamani A; Kumar P; Saha B; Kedia S; Ahuja V; Ramamurthy T; Das B
    Microb Ecol; 2019 Feb; 77(2):546-557. PubMed ID: 30009332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping human microbiome drug metabolism by gut bacteria and their genes.
    Zimmermann M; Zimmermann-Kogadeeva M; Wegmann R; Goodman AL
    Nature; 2019 Jun; 570(7762):462-467. PubMed ID: 31158845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp.
    Tan Y; Liang J; Lai M; Wan S; Luo X; Li F
    Biotechnol Adv; 2023 Dec; 69():108272. PubMed ID: 37844770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence and synthetic biology approaches for human gut microbiome.
    Kumar P; Sinha R; Shukla P
    Crit Rev Food Sci Nutr; 2022; 62(8):2103-2121. PubMed ID: 33249867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges & opportunities for phage-based in situ microbiome engineering in the gut.
    Voorhees PJ; Cruz-Teran C; Edelstein J; Lai SK
    J Control Release; 2020 Oct; 326():106-119. PubMed ID: 32569705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene editing and genetic engineering approaches for advanced probiotics: A review.
    Yadav R; Kumar V; Baweja M; Shukla P
    Crit Rev Food Sci Nutr; 2018 Jul; 58(10):1735-1746. PubMed ID: 28071925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction.
    Gong X; Geng H; Yang Y; Zhang S; He Z; Fan Y; Yin F; Zhang Z; Chen GQ
    Metab Eng; 2023 Nov; 80():94-106. PubMed ID: 37717646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools.
    Jiang X; Hall AB; Xavier RJ; Alm EJ
    PLoS One; 2019; 14(12):e0223680. PubMed ID: 31830054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Employing pigs to decipher the host genetic effect on gut microbiome: advantages, challenges, and perspectives.
    Huang L; Chen C
    Gut Microbes; 2023; 15(1):2205410. PubMed ID: 37122143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes.
    van der Ark KCH; van Heck RGA; Martins Dos Santos VAP; Belzer C; de Vos WM
    Microbiome; 2017 Jul; 5(1):78. PubMed ID: 28705224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.