These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38218429)

  • 1. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress.
    Komatsu S; Nishiuchi T; Furuya T; Tani M
    J Proteomics; 2024 Mar; 294():105073. PubMed ID: 38218429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress.
    Komatsu S; Hamada K; Furuya T; Nishiuchi T; Tani M
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress.
    Komatsu S; Tsutsui Y; Furuya T; Yamaguchi H; Hitachi K; Tsuchida K; Tani M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and Biological Analyses Reveal the Effect on Growth under Flooding Stress of Chickpea Irradiated with Millimeter Waves.
    Komatsu S; Maruyama J; Furuya T; Yin X; Yamaguchi H; Hitachi K; Miyashita N; Tsuchida K; Tani M
    J Proteome Res; 2021 Oct; 20(10):4718-4727. PubMed ID: 34455783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions.
    Zhong Z; Furuya T; Ueno K; Yamaguchi H; Hitachi K; Tsuchida K; Tani M; Tian J; Komatsu S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean.
    Zhong Z; Kobayashi T; Zhu W; Imai H; Zhao R; Ohno T; Rehman SU; Uemura M; Tian J; Komatsu S
    J Proteomics; 2020 Jun; 221():103781. PubMed ID: 32294531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation.
    Yanagawa Y; Komatsu S
    Plant Sci; 2012 Apr; 185-186():250-8. PubMed ID: 22325888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress.
    Yin X; Komatsu S
    J Proteome Res; 2016 Jul; 15(7):2283-98. PubMed ID: 27291164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants.
    Komatsu S; Makino T; Yasue H
    PLoS One; 2013; 8(6):e65301. PubMed ID: 23799004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.
    Oh MW; Nanjo Y; Komatsu S
    Protein Pept Lett; 2014 May; 21(5):458-67. PubMed ID: 24237379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of proteins in soybean roots under flooding and drought stresses.
    Oh M; Komatsu S
    J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.
    Yin X; Sakata K; Nanjo Y; Komatsu S
    J Proteomics; 2014 Jun; 106():1-16. PubMed ID: 24732726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress.
    Yin X; Komatsu S
    J Proteomics; 2015 Apr; 119():183-95. PubMed ID: 25724727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches.
    Kong FJ; Oyanagi A; Komatsu S
    Biochim Biophys Acta; 2010 Jan; 1804(1):124-36. PubMed ID: 19786127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of flooding-responsive proteins localized in the nucleus of soybean root tips.
    Komatsu S; Hiraga S; Nouri MZ
    Mol Biol Rep; 2014 Feb; 41(2):1127-39. PubMed ID: 24385303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.