These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38218517)
1. Efficient removal of triclosan from water through activated carbon adsorption and photodegradation processes. Medellín-Castillo NA; González-Fernández LA; Ocampo-Pérez R; Leyva-Ramos R; Luiz-Dotto G; Flores-Ramírez R; Navarro-Frómeta AE; Aguilera-Flores MM; Carrasco-Marín F; Hernández-Mendoza H; Aguirre-Contreras S; Sánchez-Polo M; Ocaña-Peinado FM Environ Res; 2024 Apr; 246():118162. PubMed ID: 38218517 [TBL] [Abstract][Full Text] [Related]
2. Effects of ultraviolet intensity and wavelength on the photolysis of triclosan. Son HS; Choi SB; Zoh KD; Khan E Water Sci Technol; 2007; 55(1-2):209-16. PubMed ID: 17305142 [TBL] [Abstract][Full Text] [Related]
3. Hydrothermal Conversion of Triclosan-The Role of Activated Carbon as Sorbent and Reactant. Weiner B; Sühnholz S; Kopinke FD Environ Sci Technol; 2017 Feb; 51(3):1649-1653. PubMed ID: 28005344 [TBL] [Abstract][Full Text] [Related]
4. High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al). Dou R; Zhang J; Chen Y; Feng S Environ Sci Pollut Res Int; 2017 Mar; 24(9):8778-8789. PubMed ID: 28213709 [TBL] [Abstract][Full Text] [Related]
5. Preparation of activated carbons from agricultural residues for pesticide adsorption. Ioannidou OA; Zabaniotou AA; Stavropoulos GG; Islam MA; Albanis TA Chemosphere; 2010 Sep; 80(11):1328-36. PubMed ID: 20598734 [TBL] [Abstract][Full Text] [Related]
6. Photodegradation of some brominated and phenolic micropollutants in raw hospital wastewater with CeO Sponza DT; Güney G Water Sci Technol; 2017 Nov; 76(9-10):2603-2622. PubMed ID: 29168700 [TBL] [Abstract][Full Text] [Related]
7. Inhibition mechanisms of biochar-derived dissolved organic matter to triclosan photodegradation: A remarkable role of aliphatics. Wang L; Feng J; Chen Q; Jiang H; Zhao J; Chang Z; He X; Li F; Pan B Environ Pollut; 2024 Feb; 342():123056. PubMed ID: 38040184 [TBL] [Abstract][Full Text] [Related]
8. Single adsorption of diclofenac and ronidazole from aqueous solution on commercial activated carbons: effect of chemical and textural properties. Moral-Rodríguez AI; Leyva-Ramos R; Mendoza-Mendoza E; Díaz-Flores PE; Carrales-Alvarado DH; Alexandre-Franco MF; Fernández-González C Environ Sci Pollut Res Int; 2023 Feb; 30(10):25193-25204. PubMed ID: 35015236 [TBL] [Abstract][Full Text] [Related]
9. Tracking photodegradation products and bond-cleavage reaction pathways of triclosan using ultra-high resolution mass spectrometry and stable carbon isotope analysis. Liu Y; Mekic M; Carena L; Vione D; Gligorovski S; Zhang G; Jin B Environ Pollut; 2020 Sep; 264():114673. PubMed ID: 32388298 [TBL] [Abstract][Full Text] [Related]
10. Selective removal and preconcentration of triclosan using a water-compatible imprinted nano-magnetic chitosan particles. Chen Y; Lei X; Dou R; Chen Y; Hu Y; Zhang Z Environ Sci Pollut Res Int; 2017 Aug; 24(22):18640-18650. PubMed ID: 28647880 [TBL] [Abstract][Full Text] [Related]
11. [Removal of triclosan with the method of UV/ClO2 and its degradation products]. Li YY; He WL; Li QS; Jin WW; Chen GY; Li GX Huan Jing Ke Xue; 2015 Feb; 36(2):516-22. PubMed ID: 26031077 [TBL] [Abstract][Full Text] [Related]
12. Stevia residue as new precursor of CO Yokoyama JTC; Cazetta AL; Bedin KC; Spessato L; Fonseca JM; Carraro PS; Ronix A; Silva MC; Silva TL; Almeida VC Ecotoxicol Environ Saf; 2019 May; 172():403-410. PubMed ID: 30735972 [TBL] [Abstract][Full Text] [Related]
13. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China. Yuan X; Li S; Hu J; Yu M; Li Y; Wang Z Sci Total Environ; 2019 Mar; 655():1125-1138. PubMed ID: 30577106 [TBL] [Abstract][Full Text] [Related]
14. Effective triclosan removal by using porous aromatic frameworks in continuous fixed-bed column studies. Li Y; Gong F; Yang W; Liu B Environ Sci Pollut Res Int; 2023 Dec; 30(57):121007-121013. PubMed ID: 37947929 [TBL] [Abstract][Full Text] [Related]
15. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism. Kaur H; Bansiwal A; Hippargi G; Pophali GR Environ Sci Pollut Res Int; 2018 Jul; 25(21):20473-20485. PubMed ID: 28891010 [TBL] [Abstract][Full Text] [Related]
16. A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano-polymers. Lu YC; Mao JH; Zhang W; Wang C; Cao M; Wang XD; Wang KY; Xiong XH Chemosphere; 2020 Jan; 238():124640. PubMed ID: 31524609 [TBL] [Abstract][Full Text] [Related]
17. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers. Xin L; Sun Y; Feng J; Wang J; He D Chemosphere; 2016 Feb; 144():855-63. PubMed ID: 26421625 [TBL] [Abstract][Full Text] [Related]
18. [Efficiency and Kinetics of Triclosan Degradation in Aqueous Solution by UV/Sodium Persulfate]. Li QS; Li XY; Yao NB; Luo JY; Li GX; Chen GY; Gao NY Huan Jing Ke Xue; 2017 Apr; 38(4):1467-1476. PubMed ID: 29965148 [TBL] [Abstract][Full Text] [Related]
19. Effects of monorhamnolipid and dirhamnolipid on sorption and desorption of triclosan in sediment-water system. Zhang X; Guo Q; Hu Y; Lin H Chemosphere; 2013 Jan; 90(2):581-7. PubMed ID: 23044351 [TBL] [Abstract][Full Text] [Related]
20. Adsorption behavior of triclosan on microplastics and their combined acute toxicity to D. magna. Yoon S; Lee J; Ko M; Jang T; Lim KS; Kim HO; Ha SJ; Park JA Sci Total Environ; 2023 Jul; 880():163290. PubMed ID: 37030274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]