These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38218523)

  • 21. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives.
    Tawfik A; Ismail S; Elsayed M; Qyyum MA; Rehan M
    Chemosphere; 2022 Jun; 296():133812. PubMed ID: 35149012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production.
    Leong WH; Azella Zaine SN; Ho YC; Uemura Y; Lam MK; Khoo KS; Kiatkittipong W; Cheng CK; Show PL; Lim JW
    J Environ Manage; 2019 Nov; 249():109384. PubMed ID: 31419674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques.
    Mu R; Jia Y; Ma G; Liu L; Hao K; Qi F; Shao Y
    Water Environ Res; 2021 Aug; 93(8):1217-1230. PubMed ID: 33305497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective bioremediation of tobacco wastewater by microalgae at acidic pH for synergistic biomass and lipid accumulation.
    Hao TB; Balamurugan S; Zhang ZH; Liu SF; Wang X; Li DW; Yang WD; Li HY
    J Hazard Mater; 2022 Mar; 426():127820. PubMed ID: 34865896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application.
    Phyu K; Zhi S; Liang J; Chang CC; Liu J; Cao Y; Wang H; Zhang K
    Environ Pollut; 2024 May; 349():123864. PubMed ID: 38554837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents.
    Condori MAM; Condori MM; Gutierrez MEV; Choix FJ; García-Camacho F
    Sci Total Environ; 2024 Apr; 920():171004. PubMed ID: 38369159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability.
    Sharma P; Singh SP; Iqbal HMN; Tong YW
    Environ Res; 2022 Aug; 211():113102. PubMed ID: 35300964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater.
    Zribi I; Zili F; Ben Ali R; Masmoudi MA; Karray F; Sayadi S; Ben Ouada H; Chamkha M
    Environ Res; 2023 Sep; 232():116342. PubMed ID: 37290616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microalgal-Bacterial Consortia as Future Prospect in Wastewater Bioremediation, Environmental Management and Bioenergy Production.
    Khoo KS; Chia WY; Chew KW; Show PL
    Indian J Microbiol; 2021 Sep; 61(3):262-269. PubMed ID: 34294991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A sustainable vanadium bioremediation strategy from aqueous media by two potential green microalgae.
    Tambat VS; Patel AK; Chen CW; Raj T; Chang JS; Singhania RR; Dong CD
    Environ Pollut; 2023 Apr; 323():121247. PubMed ID: 36764381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater.
    Jain M; Khan SA; Sharma K; Jadhao PR; Pant KK; Ziora ZM; Blaskovich MAT
    Bioresour Technol; 2022 Jan; 344(Pt B):126305. PubMed ID: 34752892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy.
    Bhatt P; Bhandari G; Bhatt K; Simsek H
    Chemosphere; 2022 Nov; 306():135576. PubMed ID: 35803375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review.
    Rifna EJ; Rajauria G; Dwivedi M; Tiwari BK
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):126887. PubMed ID: 37709230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes.
    Salgado EM; Gonçalves AL; Sánchez-Soberón F; Ratola N; Pires JCM
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: Start-up, optimization and stabilization.
    Qiu S; Yu Z; Hu Y; Chen Z; Guo J; Xia W; Ge S
    Water Res; 2021 May; 196():117038. PubMed ID: 33751972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass.
    Cheirsilp B; Maneechote W; Srinuanpan S; Angelidaki I
    Bioresour Technol; 2023 Nov; 387():129620. PubMed ID: 37544540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology.
    Malla MA; Ansari FA; Bux F; Kumari S
    Environ Res; 2024 Jun; 259():119439. PubMed ID: 38901811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production.
    Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT
    Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.