These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38219321)
1. A Raman spectroscopy based chemometric approach to predict the derived cetane number of hydrocarbon jet fuels and their mixtures. Ambre D; Sheyyab M; Lynch P; Mayhew EK; Brezinsky K Talanta; 2024 May; 271():125635. PubMed ID: 38219321 [TBL] [Abstract][Full Text] [Related]
2. Formulation of 7-Component Surrogate Mixtures for Military Jet Fuel and Testing in Diesel Engine. Luning Prak DJ; Simms GR; Dickerson T; McDaniel A; Cowart JS ACS Omega; 2022 Jan; 7(2):2275-2285. PubMed ID: 35071916 [TBL] [Abstract][Full Text] [Related]
3. Combustion in the future: The importance of chemistry. Kohse-Höinghaus K Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234 [TBL] [Abstract][Full Text] [Related]
4. Ignition Delay Time and Oxidation of a Kerosene Aviation Fuel and a Blended Jet50-Bio50 Fuel. Cho CH; Han HS; Sohn CH; Han JS ACS Omega; 2021 Oct; 6(40):26646-26658. PubMed ID: 34661018 [TBL] [Abstract][Full Text] [Related]
5. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519 [TBL] [Abstract][Full Text] [Related]
6. A Study to Predict Ignition Delay of an Engine Using Diesel and Biodiesel Fuel Based on the ANN and SVM Machine Learning Methods. Tuan NV; Minh DQ; Khoa NX; Lim O ACS Omega; 2023 Mar; 8(11):9995-10005. PubMed ID: 36969432 [TBL] [Abstract][Full Text] [Related]
7. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign. Schripp T; Anderson B; Crosbie EC; Moore RH; Herrmann F; Oßwald P; Wahl C; Kapernaum M; Köhler M; Le Clercq P; Rauch B; Eichler P; Mikoviny T; Wisthaler A Environ Sci Technol; 2018 Apr; 52(8):4969-4978. PubMed ID: 29601722 [TBL] [Abstract][Full Text] [Related]
9. Single-Pulse Shock Tube Experimental and Kinetic Modeling Study on Pyrolysis of a Direct Coal Liquefaction-Derived Jet Fuel and Its Blends with the Traditional RP-3 Jet Fuel. Wang BY; Zeng P; He R; Li F; Yang ZY; Xia ZX; Liang J; Wang QD ACS Omega; 2021 Jul; 6(28):18442-18450. PubMed ID: 34308075 [TBL] [Abstract][Full Text] [Related]
10. Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Sieburg A; Knebl A; Jacob JM; Frosch T Anal Bioanal Chem; 2019 Nov; 411(28):7399-7408. PubMed ID: 31529140 [TBL] [Abstract][Full Text] [Related]
11. Integrating properties and conditions to predict spray performance of alternative aviation fuel by ANN model. Liu Z; Tang Z; Yang X Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):171. PubMed ID: 37941033 [TBL] [Abstract][Full Text] [Related]
12. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport. MacDonald RD; Thomas L; Rusk FC; Marques SD; McGuire D Prehosp Emerg Care; 2010; 14(2):202-8. PubMed ID: 20199234 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based component identification for the Raman spectra of mixtures. Fan X; Ming W; Zeng H; Zhang Z; Lu H Analyst; 2019 Feb; 144(5):1789-1798. PubMed ID: 30672931 [TBL] [Abstract][Full Text] [Related]
14. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines. Xu Z; Bunker CE; Harrington Pde B Appl Spectrosc; 2010 Nov; 64(11):1251-8. PubMed ID: 21073794 [TBL] [Abstract][Full Text] [Related]
15. Combustion of Pelucchi M; Namysl S; Ranzi E; Rodriguez A; Rizzo C; Somers KP; Zhang Y; Herbinet O; Curran HJ; Battin-Leclerc F; Faravelli T Energy Fuels; 2020 Nov; 34(11):14688-14707. PubMed ID: 33250570 [TBL] [Abstract][Full Text] [Related]
16. Unsupervised classification of petroleum Certified Reference Materials and other fuels by chemometric analysis of gas chromatography-mass spectrometry data. de Carvalho Rocha WF; Schantz MM; Sheen DA; Chu PM; Lippa KA Fuel (Lond); 2017 Jun; 197():248-258. PubMed ID: 28603295 [TBL] [Abstract][Full Text] [Related]
17. Study on Ignition Delay and Reaction Mechanism of RP-3/Air Combustion Adding C Yu B; Jiang X; Zhang C; Xu P; He D; Yu J; Cai Y ACS Omega; 2023 Jul; 8(27):24362-24370. PubMed ID: 37457478 [TBL] [Abstract][Full Text] [Related]
18. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine. Christie S; Raper D; Lee DS; Williams PI; Rye L; Blakey S; Wilson CW; Lobo P; Hagen D; Whitefield PD Environ Sci Technol; 2012 Jun; 46(11):6393-400. PubMed ID: 22534092 [TBL] [Abstract][Full Text] [Related]
19. Refining and blending of aviation turbine fuels. White RD Drug Chem Toxicol; 1999 Feb; 22(1):143-53. PubMed ID: 10189575 [TBL] [Abstract][Full Text] [Related]
20. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage. Lobato MR; Cazarolli JC; Rios RDF; D' Alessandro EB; Lutterbach MTS; Filho NRA; Pasa VMD; Aranda D; Scorza PR; Bento FM Braz J Microbiol; 2023 Sep; 54(3):1603-1621. PubMed ID: 37584891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]