BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38219536)

  • 1. Uncovering hidden treasures: Mapping morphological changes in the differentiation of human mesenchymal stem cells to osteoblasts using deep learning.
    Quadri F; Govindaraj M; Soman S; Dhutia NM; Vijayavenkataraman S
    Micron; 2024 Mar; 178():103581. PubMed ID: 38219536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated digital image quantification of histological staining for the analysis of the trilineage differentiation potential of mesenchymal stem cells.
    Eggerschwiler B; Canepa DD; Pape HC; Casanova EA; Cinelli P
    Stem Cell Res Ther; 2019 Feb; 10(1):69. PubMed ID: 30808403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells.
    Matsuoka F; Takeuchi I; Agata H; Kagami H; Shiono H; Kiyota Y; Honda H; Kato R
    PLoS One; 2013; 8(2):e55082. PubMed ID: 23437049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of transfer learning for the segmentation of human mesenchymal stem cells-A validation study.
    Adnan N; Umer F; Malik S
    Tissue Cell; 2023 Aug; 83():102149. PubMed ID: 37429132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating adipocyte differentiation of bone marrow-derived mesenchymal stem cells by a deep learning method for automatic lipid droplet counting.
    Hassanlou L; Meshgini S; Alizadeh E
    Comput Biol Med; 2019 Sep; 112():103365. PubMed ID: 31374349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput screening of mesenchymal stem cell lines using deep learning.
    Kim G; Jeon JH; Park K; Kim SW; Kim DH; Lee S
    Sci Rep; 2022 Oct; 12(1):17507. PubMed ID: 36266301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation.
    Waisman A; La Greca A; Möbbs AM; Scarafía MA; Santín Velazque NL; Neiman G; Moro LN; Luzzani C; Sevlever GE; Guberman AS; Miriuka SG
    Stem Cell Reports; 2019 Apr; 12(4):845-859. PubMed ID: 30880077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells.
    Molloy AP; Martin FT; Dwyer RM; Griffin TP; Murphy M; Barry FP; O'Brien T; Kerin MJ
    Int J Cancer; 2009 Jan; 124(2):326-32. PubMed ID: 19003962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy.
    Docheva D; Padula D; Popov C; Mutschler W; Clausen-Schaumann H; Schieker M
    J Cell Mol Med; 2008 Apr; 12(2):537-52. PubMed ID: 18419596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning model for detection and tracking in high-throughput images of organoid.
    Bian X; Li G; Wang C; Liu W; Lin X; Chen Z; Cheung M; Luo X
    Comput Biol Med; 2021 Jul; 134():104490. PubMed ID: 34102401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.
    Birmingham E; Niebur GL; McHugh PE; Shaw G; Barry FP; McNamara LM
    Eur Cell Mater; 2012 Jan; 23():13-27. PubMed ID: 22241610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures.
    He L; Li M; Wang X; Wu X; Yue G; Wang T; Zhou Y; Lei B; Zhou G
    BMC Biol; 2024 Jan; 22(1):1. PubMed ID: 38167069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment.
    Hu L; Yin C; Zhao F; Ali A; Ma J; Qian A
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29370110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
    Zhong S; He X; Li Y; Lou X
    Tissue Eng Regen Med; 2019 Apr; 16(2):141-150. PubMed ID: 30989041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds.
    George J; Kuboki Y; Miyata T
    Biotechnol Bioeng; 2006 Oct; 95(3):404-11. PubMed ID: 16572435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of time-course morphological features for efficient prediction of osteogenic potential in human mesenchymal stem cells.
    Matsuoka F; Takeuchi I; Agata H; Kagami H; Shiono H; Kiyota Y; Honda H; Kato R
    Biotechnol Bioeng; 2014 Jul; 111(7):1430-9. PubMed ID: 24420699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 mediated GFP-human dentin matrix protein 1 (DMP1) promoter knock-in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation.
    Shahabipour F; Oskuee RK; Shokrgozar MA; Naderi-Meshkin H; Goshayeshi L; Bonakdar S
    J Gene Med; 2020 Dec; 22(12):e3288. PubMed ID: 33047833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.