These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 38219555)

  • 1. Effects of ankle exoskeleton assistance and plantar pressure biofeedback on incline walking mechanics and muscle activity in cerebral palsy.
    Fang Y; Lerner ZF
    J Biomech; 2024 Jan; 163():111944. PubMed ID: 38219555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Ankle Exoskeleton Assistance Affects the Mechanics of Incline Walking and Stair Ascent in Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():442-449. PubMed ID: 33523814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Energy Cost of Incline Walking and Stair Ascent With Ankle Exoskeleton Assistance in Cerebral Palsy.
    Fang Y; Orekhov G; Lerner ZF
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2143-2152. PubMed ID: 34941495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the effectiveness of robotic plantarflexion resistance and biofeedback between overground and treadmill walking.
    Bowersock CD; Lerner ZF
    J Biomech; 2024 Oct; 175():112282. PubMed ID: 39182263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.
    Lerner ZF; Harvey TA; Lawson JL
    Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Ankle Muscle Recruitment via Plantar Pressure Biofeedback during Robot Resisted Gait Training in Cerebral Palsy.
    Conner BC; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does Ankle Exoskeleton Assistance Impair Stability During Walking in Individuals with Cerebral Palsy?
    Harvey TA; Conner BC; Lerner ZF
    Ann Biomed Eng; 2021 Sep; 49(9):2522-2532. PubMed ID: 34189633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility evaluation of a dual-mode ankle exoskeleton to assist and restore community ambulation in older adults.
    Fang Y; Harshe K; Franz JR; Lerner ZF
    Wearable Technol; 2022; 3():. PubMed ID: 36404993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study.
    Fang Y; Orekhov G; Lerner ZF
    Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 May; 43(7):1401-7. PubMed ID: 20171638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy.
    Orekhov G; Fang Y; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audiovisual biofeedback amplifies plantarflexor adaptation during walking among children with cerebral palsy.
    Spomer AM; Conner BC; Schwartz MH; Lerner ZF; Steele KM
    J Neuroeng Rehabil; 2023 Dec; 20(1):164. PubMed ID: 38062454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.