These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 38219555)
21. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
22. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation. Lerner ZF; Damiano DL; Bulea TC Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959 [TBL] [Abstract][Full Text] [Related]
23. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Kao PC; Lewis CL; Ferris DP J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952 [TBL] [Abstract][Full Text] [Related]
24. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton. Jeong H; Haghighat P; Kantharaju P; Jacobson M; Jeong H; Kim M Sci Rep; 2023 Jan; 13(1):1363. PubMed ID: 36693935 [TBL] [Abstract][Full Text] [Related]
25. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Galle S; Malcolm P; Collins SH; De Clercq D J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684 [TBL] [Abstract][Full Text] [Related]
26. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
27. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
28. Motor modules during adaptation to walking in a powered ankle exoskeleton. Jacobs DA; Koller JR; Steele KM; Ferris DP J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705 [TBL] [Abstract][Full Text] [Related]
29. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait. Lerner ZF; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868 [TBL] [Abstract][Full Text] [Related]
30. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series. Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513 [TBL] [Abstract][Full Text] [Related]
31. Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy. Conner BC; Luque J; Lerner ZF Ann Biomed Eng; 2020 Apr; 48(4):1309-1321. PubMed ID: 31950309 [TBL] [Abstract][Full Text] [Related]
32. Mechanics and energetics of incline walking with robotic ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208 [TBL] [Abstract][Full Text] [Related]
33. Under pressure: design and validation of a pressure-sensitive insole for ankle plantar flexion biofeedback during neuromuscular gait training. Conner BC; Fang Y; Lerner ZF J Neuroeng Rehabil; 2022 Dec; 19(1):135. PubMed ID: 36482447 [TBL] [Abstract][Full Text] [Related]
34. Adaptation to walking with an exoskeleton that assists ankle extension. Galle S; Malcolm P; Derave W; De Clercq D Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319 [TBL] [Abstract][Full Text] [Related]
35. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics. Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O Clin Biomech (Bristol); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949 [TBL] [Abstract][Full Text] [Related]
36. An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy. Lerner ZF; Gasparri GM; Bair MO; Lawson JL; Luque J; Harvey TA; Lerner AT IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1985-1993. PubMed ID: 30235140 [TBL] [Abstract][Full Text] [Related]
37. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
38. Immediate Effects of Immersive Biofeedback on Gait in Children With Cerebral Palsy. Booth AT; Buizer AI; Harlaar J; Steenbrink F; van der Krogt MM Arch Phys Med Rehabil; 2019 Apr; 100(4):598-605. PubMed ID: 30447196 [TBL] [Abstract][Full Text] [Related]
39. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy. Lerner ZF; Damiano DL; Bulea TC Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202 [TBL] [Abstract][Full Text] [Related]
40. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]