These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38219626)

  • 1. Synthesis and evaluation of aromatic stationary phases based on linear solvation energy relationship model for expanded application in supercritical fluid chromatography.
    Ge D; Yang J; Yu Z; Lu J; Chen Y; Jin Y; Ke Y; Fu Q; Liang X
    J Chromatogr A; 2024 Feb; 1716():464640. PubMed ID: 38219626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in-depth investigation of supercritical fluid chromatography retention mechanisms by evaluation of a series of specially designed alkylsiloxane-bonded stationary phases based on linear solvation energy relationship.
    Jiang D; Wu D; Zhou G; Dai Y; Yang J; Jin Y; Fu Q; Ke Y; Liang X
    J Chromatogr A; 2023 Feb; 1690():463781. PubMed ID: 36638687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a series of phenyl-type stationary phases in supercritical fluid chromatography with the linear solvation energy relationship model and its application to the separation of phenolic compounds.
    Jiang D; Ke Y; Cai J; Zhang H; Fu Q; Jin Y; Liang X
    J Chromatogr A; 2020 Mar; 1614():460700. PubMed ID: 31740031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations.
    Fu Q; Jiang D; Xin H; Dai Z; Cai J; Ke Y; Jin Y; Liang X
    J Chromatogr A; 2019 May; 1593():127-134. PubMed ID: 30885402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of stationary phases based on polysiloxanes thermally immobilized onto silica and metalized silica using supercritical fluid chromatography with the solvation parameter model.
    da Silva CG; Collins CH; Lesellier E; West C
    J Chromatogr A; 2013 Nov; 1315():176-87. PubMed ID: 24079548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved subtraction model applied in supercritical fluid chromatography to characterise polar stationary phases.
    Ge D; Lu J; Yu Z; Jin Y; Ke Y; Fu Q; Liang X
    J Chromatogr A; 2024 Aug; 1729():465050. PubMed ID: 38852270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluid chromatography based on reversed-phase/ ion chromatography mixed-mode stationary phase for separation of spirooxindole alkaloids.
    Fu Q; Dong W; Ge D; Ke Y; Jin Y
    J Chromatogr A; 2023 Aug; 1705():464163. PubMed ID: 37348226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development progress of stationary phase for supercritical fluid chromatography and related application in natural products].
    Song CY; Jin GW; Yu DP; Xia DH; Feng J; Guo ZM; Liang XM
    Se Pu; 2023 Oct; 41(10):866-878. PubMed ID: 37875409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity.
    Gros Q; Molineau J; Noireau A; Duval J; Bamba T; Lesellier E; West C
    J Chromatogr A; 2021 Feb; 1639():461923. PubMed ID: 33524935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the solvation parameter model or its adaptations adequate to account for ionic interactions when characterizing stationary phases for drug impurity profiling with supercritical fluid chromatography?
    Galea C; West C; Mangelings D; Vander Heyden Y
    Anal Chim Acta; 2016 Jun; 924():9-20. PubMed ID: 27181639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An attempt to estimate ionic interactions with phenyl and pentafluorophenyl stationary phases in supercritical fluid chromatography.
    West C; Lemasson E; Khater S; Lesellier E
    J Chromatogr A; 2015 Sep; 1412():126-38. PubMed ID: 26278356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high concentrations of mobile phase additives on retention and separation mechanisms on a teicoplanin aglycone stationary phase in supercritical fluid chromatography.
    Raimbault A; West C
    J Chromatogr A; 2019 Oct; 1604():460494. PubMed ID: 31488292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of retention and separation mechanisms with Pirkle-type enantioselective stationary phases in supercritical fluid chromatography.
    West C; Khater S
    J Chromatogr A; 2020 Aug; 1626():461352. PubMed ID: 32797832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cinchona-based zwitterionic stationary phases: Exploring retention and enantioseparation mechanisms in supercritical fluid chromatography with a fragmentation approach.
    Raimbault A; Ma CMA; Ferri M; Bäurer S; Bonnet P; Bourg S; Lämmerhofer M; West C
    J Chromatogr A; 2020 Feb; 1612():460689. PubMed ID: 31733894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography.
    West C; Khater S; Lesellier E
    J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of stationary phases by a linear solvation energy relationship utilizing supercritical fluid chromatography.
    Mitchell CR; Benz NJ; Zhang S
    J Sep Sci; 2010 Oct; 33(19):3060-7. PubMed ID: 20730839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of column history in supercritical fluid chromatography: Practical implications.
    Plachká K; Střítecký J; Svec F; Nováková L
    J Chromatogr A; 2021 Aug; 1651():462272. PubMed ID: 34107402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases.
    Lesellier E
    J Chromatogr A; 2012 Nov; 1266():34-42. PubMed ID: 23116802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of three macrocyclic glycopeptide stationary phases in supercritical fluid chromatography.
    Khater S; West C
    J Chromatogr A; 2019 Oct; 1604():460485. PubMed ID: 31477276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.