These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38221881)
1. Rational design of a polypropylene composite foam with open-cell structure Li Z; Yang C; Yan K; Xia M; Yan Z; Wang D; Wang W Soft Matter; 2024 Jan; 20(5):1089-1099. PubMed ID: 38221881 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the Sound and Thermal Insulation Properties of Polypropylene Foam by Preparing High Melt Strength Polypropylene. Liu F; Shen C; You F; Zhao W; Deng C; Jiang X Macromol Rapid Commun; 2023 Oct; 44(20):e2300344. PubMed ID: 37552045 [TBL] [Abstract][Full Text] [Related]
3. The Injected Foaming Study of Polypropylene/Multiwall Carbon Nanotube Composite with In Situ Fibrillation Reinforcement. Li G; Fei Y; Kuang T; Liu T; Zhong M; Li Y; Jiang J; Turng LS; Chen F Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559778 [TBL] [Abstract][Full Text] [Related]
4. High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO Wang Y; Guo F; Liao X; Li S; Yan Z; Zou F; Peng Q; Li G Int J Biol Macromol; 2023 May; 236():123961. PubMed ID: 36898452 [TBL] [Abstract][Full Text] [Related]
5. High-expansion polypropylene foam prepared in non-crystalline state and oil adsorption performance of open-cell foam. Hou J; Zhao G; Zhang L; Wang G; Li B J Colloid Interface Sci; 2019 Apr; 542():233-242. PubMed ID: 30763890 [TBL] [Abstract][Full Text] [Related]
6. In Situ Dispersion of Lignin in Polypropylene via Supercritical CO Ho KH; Lu X; Lau SK Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37111960 [TBL] [Abstract][Full Text] [Related]
7. Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures. Feng C; Ni H; Chen J; Yang W ACS Appl Mater Interfaces; 2016 Aug; 8(30):19732-8. PubMed ID: 27391206 [TBL] [Abstract][Full Text] [Related]
8. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. Rizvi A; Chu RK; Lee JH; Park CB ACS Appl Mater Interfaces; 2014 Dec; 6(23):21131-40. PubMed ID: 25437647 [TBL] [Abstract][Full Text] [Related]
9. Preparation of Open-Cell Long-Chain Branched Polypropylene Foams for Oil Absorption. Li C; Hu J; Yan H; Yao Y; Zhang L; Bao J ACS Omega; 2023 Dec; 8(51):49372-49382. PubMed ID: 38162746 [TBL] [Abstract][Full Text] [Related]
10. In Situ Nanofibrillar Polypropylene-Based Composite Microcellular Foams with Enhanced Mechanical and Flame-Retardant Performances. Jiang Y; Jiang J; Yang L; Zhang Y; Wang X; Zhao N; Hou J; Li Q Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987279 [TBL] [Abstract][Full Text] [Related]
11. Extrusion Foaming of Lightweight Polystyrene Composite Foams with Controllable Cellular Structure for Sound Absorption Application. Fei Y; Fang W; Zhong M; Jin J; Fan P; Yang J; Fei Z; Xu L; Chen F Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960090 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation. Zhao J; Huang Y; Wang G; Qiao Y; Chen Z; Zhang A; Park CB J Hazard Mater; 2021 Sep; 418():126295. PubMed ID: 34111752 [TBL] [Abstract][Full Text] [Related]
13. Highly Durable Superhydrophobic Polymer Foams Fabricated by Extrusion and Supercritical CO Mi HY; Jing X; Liu Y; Li L; Li H; Peng XF; Zhou H ACS Appl Mater Interfaces; 2019 Feb; 11(7):7479-7487. PubMed ID: 30672685 [TBL] [Abstract][Full Text] [Related]
14. Development of Eco-Friendly and High-Strength Foam Sensors Based on Segregated Elastomer Composites with a Large Work Range and High Sensitivity. Li X; Wu M; Ma W; Zhou X; Chen J; Ren Q; Li S; Xiao P; Wang L; Zheng W ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032835 [TBL] [Abstract][Full Text] [Related]
15. Skinless Polyphenylene Sulfide Foam with Enhanced Thermal Insulation Properties Fabricated by Constructing Aligned Gas Barrier Layers for Surface-Constrained sc-CO Yuan Z; Zhao X; Ye L ACS Appl Mater Interfaces; 2023 Jun; 15(25):30826-30836. PubMed ID: 37329323 [TBL] [Abstract][Full Text] [Related]
16. A new promising nucleating agent for polymer foaming: effects of hollow molecular-sieve particles on polypropylene supercritical CO Yang C; Wang M; Xing Z; Zhao Q; Wang M; Wu G RSC Adv; 2018 May; 8(36):20061-20067. PubMed ID: 35541683 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications. Rzeczkowski P; Krause B; Pötschke P Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960446 [TBL] [Abstract][Full Text] [Related]
18. Low-Density and High-Performance Fiber-Reinforced PP/POE Composite Foam via Irradiation Crosslinking. Li H; Wang T; Cui C; Mu Y; Niu K Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543351 [TBL] [Abstract][Full Text] [Related]
19. Improving the Supercritical CO₂ Foaming of Polypropylene by the Addition of Fluoroelastomer as a Nucleation Agent. Yang C; Zhao Q; Xing Z; Zhang W; Zhang M; Tan H; Wang J; Wu G Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960210 [TBL] [Abstract][Full Text] [Related]
20. Lightweight and High Impact Toughness PP/PET/POE Composite Foams Fabricated by In Situ Nanofibrillation and Microcellular Injection Molding. Sun J; Li Q; Jiang Y; Jiang J; Yang L; Jia C; Chen F; Wang X Polymers (Basel); 2023 Jan; 15(1):. PubMed ID: 36616576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]