BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38221918)

  • 21. Immobilization of Protease K with ZIF-8 for Enhanced Stability in Polylactic Acid Melt Processing and Catalytic Degradation.
    Weng Y; Dunn CB; Qiang Z; Ren J
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37971900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weathering and degradation of polylactic acid masks in a simulated environment in the context of the COVID-19 pandemic and their effects on the growth of winter grazing ryegrass.
    Yu F; Pei Y; Zhang X; Ma J
    J Hazard Mater; 2023 Apr; 448():130889. PubMed ID: 36731322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of degradation behavior and conditions for the protease K of polylactic acid films by simulation.
    Pang W; Li B; Wu Y; Tian S; Zhang Y; Yang J
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127496. PubMed ID: 37858641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transformation and stable isotope fractionation of the urban biocide terbutryn during biodegradation, photodegradation and abiotic hydrolysis.
    Junginger T; Payraudeau S; Imfeld G
    Chemosphere; 2022 Oct; 305():135329. PubMed ID: 35709839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibiotic resistance genes proliferation under anaerobic degradation of polylactic acid and polyhydroxy butyrate bioplastics.
    Haffiez N; Zakaria BS; Mohammad Mirsoleimani Azizi S; Ranjan Dhar B
    Environ Int; 2023 May; 175():107938. PubMed ID: 37120980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical behavior of phthalates under abiotic conditions in landfills.
    Huang J; Nkrumah PN; Li Y; Appiah-Sefah G
    Rev Environ Contam Toxicol; 2013; 224():39-52. PubMed ID: 23232918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Progress on biodegradation of polylactic acid--a review].
    Li F; Wang S; Liu W; Chen G
    Wei Sheng Wu Xue Bao; 2008 Feb; 48(2):262-8. PubMed ID: 18438013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in Crystal Structure and Accelerated Hydrolytic Degradation of Polylactic Acid in High Humidity.
    Kobayashi Y; Ueda T; Ishigami A; Ito H
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Actinobacteria as Promising Candidate for Polylactic Acid Type Bioplastic Degradation.
    Butbunchu N; Pathom-Aree W
    Front Microbiol; 2019; 10():2834. PubMed ID: 31921021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-Stat Titration: A Rapid Assay for Enzymatic Degradability of Bio-Based Polymers.
    Miksch L; Gutow L; Saborowski R
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33799772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting Degradation of Biodegradable Polymers.
    Bher A; Cho Y; Auras R
    Macromol Rapid Commun; 2023 Mar; 44(5):e2200769. PubMed ID: 36648129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathways for degradation of plastic polymers floating in the marine environment.
    Gewert B; Plassmann MM; MacLeod M
    Environ Sci Process Impacts; 2015 Sep; 17(9):1513-21. PubMed ID: 26216708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating and Modeling the Degradation of PLA/PHB Fabrics in Marine Water.
    Bao Q; Zhang Z; Luo H; Tao X
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influences of bioplastic polylactic acid on near-infrared-based sorting of conventional plastic.
    Chen X; Kroell N; Li K; Feil A; Pretz T
    Waste Manag Res; 2021 Sep; 39(9):1210-1213. PubMed ID: 33832373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of Organophosphorus Compounds Predicted by Enzymatic Process Using Molecular Modelling and Observed in Soil Samples Through Analytical Techniques and Microbiological Analysis: A Comparison.
    Cardozo M; de Almeida JSFD; Cavalcante SFA; Salgado JRS; Gonçalves AS; França TCC; Kuca K; Bizzo HR
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31878010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates.
    Numata K; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2008 Aug; 9(8):2180-5. PubMed ID: 18636774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid.
    Wan L; Zhou S; Zhang Y
    Int J Biol Macromol; 2019 Mar; 125():1093-1102. PubMed ID: 30572044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation behavior of acetylated lignin added polylactic acid under thermophilic composting conditions.
    Park S; Kim J; Choi JH; Kim JC; Kim J; Cho Y; Jung S; Kwak HW; Choi IG
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127472. PubMed ID: 37858649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.
    Musioł M; Sikorska W; Adamus G; Janeczek H; Richert J; Malinowski R; Jiang G; Kowalczuk M
    Waste Manag; 2016 Jun; 52():69-76. PubMed ID: 27103398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts.
    Kumar S; Singh S; Senapati S; Singh AP; Ray B; Maiti P
    Int J Biol Macromol; 2017 Nov; 104(Pt A):487-497. PubMed ID: 28624369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.