These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38221922)

  • 1. Going against the Grain: Atomistic Modeling of Grain Boundaries in Solid Electrolytes for Solid-State Batteries.
    Dawson JA
    ACS Mater Au; 2024 Jan; 4(1):1-13. PubMed ID: 38221922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries.
    Dawson JA; Canepa P; Famprikis T; Masquelier C; Islam MS
    J Am Chem Soc; 2018 Jan; 140(1):362-368. PubMed ID: 29224340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes.
    Yu S; Siegel DJ
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38151-38158. PubMed ID: 30360045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Design of Antiperovskite Solid Electrolytes.
    Dutra ACC; Dawson JA
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(37):18256-18270. PubMed ID: 37752904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Nanoscale Complexion in LATP Solid-State Electrolyte via Interfacial Mg
    Stegmaier S; Reuter K; Scheurer C
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing Ultralow Activation Energies for Lithium Transport in Garnet Electrolytes.
    Pesci FM; Bertei A; Brugge RH; Emge SP; Hekselman AKO; Marbella LE; Grey CP; Aguadero A
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32806-32816. PubMed ID: 32573199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in solid-state electrolytes for alkali-ion batteries.
    Jiang C; Li H; Wang C
    Sci Bull (Beijing); 2017 Nov; 62(21):1473-1490. PubMed ID: 36659397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling Interfacial Li-Ion Dynamics in Li
    Bonilla MR; García Daza FA; Ranque P; Aguesse F; Carrasco J; Akhmatskaya E
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30653-30667. PubMed ID: 34161063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries.
    Wang R; Sun K; Zhang Y; Li B; Qian C; Li J; Liu F; Bao W
    J Colloid Interface Sci; 2022 Sep; 621():41-66. PubMed ID: 35452929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Interfaces in Solid-State Batteries.
    Miao X; Guan S; Ma C; Li L; Nan CW
    Adv Mater; 2023 Dec; 35(50):e2206402. PubMed ID: 36062873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous Phase Induced Lithium Dendrite Suppression in Glass-Ceramic Garnet-Type Solid Electrolytes.
    Hoinkis N; Schuhmacher J; Fuchs T; Leukel S; Loho C; Roters A; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28692-28704. PubMed ID: 37254535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering.
    Cretu S; Bradley DG; Feng LPW; Kudu OU; Nguyen LL; Nguyen TT; Jamali A; Chotard JN; Seznec V; Hanna JV; Demortière A; Duchamp M
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39186-39197. PubMed ID: 37556356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical approaches to defect mechanisms and transport properties of compounds used for electrodes and solid-state electrolytes in alkali-ion batteries.
    Zulueta YA; Nguyen MT
    Phys Chem Chem Phys; 2023 Oct; 25(41):27926-27935. PubMed ID: 37830129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries.
    Yang X; Gao X; Jiang M; Luo J; Yan J; Fu J; Duan H; Zhao S; Tang Y; Yang R; Li R; Wang J; Huang H; Veer Singh C; Sun X
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202215680. PubMed ID: 36446742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping the Future of Solid-State Electrolytes through Computational Modeling.
    Baktash A; Reid JC; Yuan Q; Roman T; Searles DJ
    Adv Mater; 2020 May; 32(18):e1908041. PubMed ID: 32141672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na superionic conductor-type LiZr
    Nakayama M; Nakano K; Harada M; Tanibata N; Takeda H; Noda Y; Kobayashi R; Karasuyama M; Takeuchi I; Kotobuki M
    Chem Commun (Camb); 2022 Aug; 58(67):9328-9340. PubMed ID: 35950409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid-State Batteries.
    Yang M; Liu Y; Nolan AM; Mo Y
    Adv Mater; 2021 Mar; 33(11):e2008081. PubMed ID: 33576149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.
    Wang C; Fu K; Kammampata SP; McOwen DW; Samson AJ; Zhang L; Hitz GT; Nolan AM; Wachsman ED; Mo Y; Thangadurai V; Hu L
    Chem Rev; 2020 May; 120(10):4257-4300. PubMed ID: 32271022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.