BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 38222286)

  • 1. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops.
    Khatodia S; Bhatotia K; Passricha N; Khurana SM; Tuteja N
    Front Plant Sci; 2016; 7():506. PubMed ID: 27148329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for the robust expression and single-step purification of dCas9 for CRISPR interference/activation (CRISPRi/a) applications.
    Pandey H; Yadav B; Shah K; Kaur R; Choudhary D; Sharma N; Rishi V
    Protein Expr Purif; 2024 Aug; 220():106500. PubMed ID: 38718989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding.
    Cao HX; Wang W; Le HT; Vu GT
    Int J Genomics; 2016; 2016():5078796. PubMed ID: 28097123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality.
    Shen Q; Ruan H; Zhang H; Wu T; Zhu K; Han W; Dong R; Ming T; Qi H; Zhang Y
    Front Microbiol; 2024; 15():1375120. PubMed ID: 38605715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples.
    Rengasamy B; Manna M; Thajuddin NB; Sathiyabama M; Sinha AK
    Physiol Mol Biol Plants; 2024 Feb; 30(2):185-198. PubMed ID: 38623165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane.
    Prado GS; Rocha DC; Dos Santos LN; Contiliani DF; Nobile PM; Martinati-Schenk JC; Padilha L; Maluf MP; Lubini G; Pereira TC; Monteiro-Vitorello CB; Creste S; Boscariol-Camargo RL; Takita MA; Cristofani-Yaly M; de Souza AA
    Front Plant Sci; 2023; 14():1331258. PubMed ID: 38259920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant-Pathogen Interactions for Better Crop Protection.
    Barakate A; Stephens J
    Front Plant Sci; 2016; 7():765. PubMed ID: 27313592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The type V effectors for CRISPR/Cas-mediated genome engineering in plants.
    Zhang R; Chai N; Liu T; Zheng Z; Lin Q; Xie X; Wen J; Yang Z; Liu YG; Zhu Q
    Biotechnol Adv; 2024 May; 74():108382. PubMed ID: 38801866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclease-dead Cas9-derived tool represses target gene expression.
    Wang B; Liu X; Li Z; Zeng K; Guo J; Xin T; Zhang Z; Li JF; Yang X
    Plant Physiol; 2024 Mar; ():. PubMed ID: 38478589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 gene targeting plus nanopore DNA sequencing with the plasmid pBR322 in the classroom.
    Wünschiers R; Leidenfrost RM; Holtorf H; Dittrich B; Dürr T; Braun J
    J Microbiol Biol Educ; 2024 May; ():e0018723. PubMed ID: 38727241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. flySAM Transgenic CRISPRa System Manual.
    Jia Y; Shen D; Wang X; Sun J; Peng P; Xu RG; Xu B; Ni JQ
    Bio Protoc; 2019 Jan; 9(2):e3147. PubMed ID: 33654892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the molecular landscape of NNK-induced transformation: A comprehensive genome-wide CRISPR/Cas9 screening.
    Dinh T; Rahm M; Wang Z; McFarland C; Khalil A
    Genes Dis; 2024 Jul; 11(4):101131. PubMed ID: 38450101
    [No Abstract]   [Full Text] [Related]  

  • 13. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks.
    Hwarari D; Radani Y; Ke Y; Chen J; Yang L
    Funct Integr Genomics; 2024 Mar; 24(2):50. PubMed ID: 38441816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape.
    Kharbikar L; Konwarh R; Chakraborty M; Nandanwar S; Marathe A; Yele Y; Ghosh PK; Sanan-Mishra N; Singh AP
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1825-1850. PubMed ID: 38222286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
    Moradpour M; Abdulah SNA
    Plant Biotechnol J; 2020 Jan; 18(1):32-44. PubMed ID: 31392820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.