BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 38222286)

  • 21. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape.
    Kharbikar L; Konwarh R; Chakraborty M; Nandanwar S; Marathe A; Yele Y; Ghosh PK; Sanan-Mishra N; Singh AP
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1825-1850. PubMed ID: 38222286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
    Moradpour M; Abdulah SNA
    Plant Biotechnol J; 2020 Jan; 18(1):32-44. PubMed ID: 31392820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9-Mediated Mutation in
    Debbarma J; Saikia B; Singha DL; Das D; Keot AK; Maharana J; Velmurugan N; Arunkumar KP; Reddy PS; Chikkaputtaiah C
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-Targeted Disruption of Two Highly Homologous
    Nikolić I; Samardžić J; Stevanović S; Miljuš-Đukić J; Milisavljević M; Timotijević G
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Precise transcript targeting by CRISPR-Csm complexes.
    Colognori D; Trinidad M; Doudna JA
    Nat Biotechnol; 2023 Sep; 41(9):1256-1264. PubMed ID: 36690762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide.
    Ly DNP; Iqbal S; Fosu-Nyarko J; Milroy S; Jones MGK
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR technology: A decade of genome editing is only the beginning.
    Wang JY; Doudna JA
    Science; 2023 Jan; 379(6629):eadd8643. PubMed ID: 36656942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9 based
    Tek MI; Calis O; Fidan H; Shah MD; Celik S; Wani SH
    Front Plant Sci; 2022; 13():1081506. PubMed ID: 36600929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks.
    Yang L; Machin F; Wang S; Saplaoura E; Kragler F
    Nat Biotechnol; 2023 Jul; 41(7):958-967. PubMed ID: 36593415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing.
    Chincinska IA; Miklaszewska M; Sołtys-Kalina D
    Planta; 2022 Dec; 257(1):25. PubMed ID: 36562862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-induced miRNA156-recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat.
    Gupta A; Hua L; Zhang Z; Yang B; Li W
    Plant Biotechnol J; 2023 Mar; 21(3):536-548. PubMed ID: 36403232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted Mutagenesis of the Multicopy
    Karlson D; Mojica JP; Poorten TJ; Lawit SJ; Jali S; Chauhan RD; Pham GM; Marri P; Guffy SL; Fear JM; Ochsenfeld CA; Lincoln Chapman TA; Casamali B; Venegas JP; Kim HJ; Call A; Sublett WL; Mathew LG; Shariff A; Watts JM; Mann M; Hummel A; Rapp R
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of CRISPR/Cas13-Based RNA Editing in Plants.
    Kavuri NR; Ramasamy M; Qi Y; Mandadi K
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting plant genome editing with a versatile CRISPR-Combo system.
    Pan C; Li G; Malzahn AA; Cheng Y; Leyson B; Sretenovic S; Gurel F; Coleman GD; Qi Y
    Nat Plants; 2022 May; 8(5):513-525. PubMed ID: 35596077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef).
    Beyene G; Chauhan RD; Villmer J; Husic N; Wang N; Gebre E; Girma D; Chanyalew S; Assefa K; Tabor G; Gehan M; McGrone M; Yang M; Lenderts B; Schwartz C; Gao H; Gordon-Kamm W; Taylor NJ; MacKenzie DJ
    Plant Biotechnol J; 2022 Sep; 20(9):1716-1729. PubMed ID: 35560779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.