BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38222472)

  • 1. Acoustofluidic separation of prolate and spherical micro-objects.
    Khan MS; Ali M; Lee SH; Jang KY; Lee SJ; Park J
    Microsyst Nanoeng; 2024; 10():6. PubMed ID: 38222472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power-controlled acoustofluidic manipulation of microparticles.
    Wu F; Wang H; Sun C; Yuan F; Xie Z; Mikhaylov R; Wu Z; Shen M; Yang J; Evans W; Fu Y; Tian L; Yang X
    Ultrasonics; 2023 Sep; 134():107087. PubMed ID: 37406388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High performance isolation of circulating tumor cells by acoustofluidic chip coupled with ultrasonic concentrated energy transducer.
    Qiu H; Wang H; Yang X; Huo F
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113138. PubMed ID: 36638753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustofluidics 24: theory and experimental measurements of acoustic interaction force.
    Sepehrirahnama S; Ray Mohapatra A; Oberst S; Chiang YK; Powell DA; Lim KM
    Lab Chip; 2022 Sep; 22(18):3290-3313. PubMed ID: 35969199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidic bacteria separation.
    Li S; Ma F; Bachman H; Cameron CE; Zeng X; Huang TJ
    J Micromech Microeng; 2017 Jan; 27(1):. PubMed ID: 28798539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole method.
    Lee WM; Chen JT
    J Acoust Soc Am; 2016 Oct; 140(4):2235. PubMed ID: 27794351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Born approximation of acoustic radiation force and torque on soft objects of arbitrary shape.
    Jerome TS; Ilinskii YA; Zabolotskaya EA; Hamilton MF
    J Acoust Soc Am; 2019 Jan; 145(1):36. PubMed ID: 30710947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers.
    Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Born approximation of acoustic radiation force and torque on inhomogeneous objects.
    Jerome TS; Hamilton MF
    J Acoust Soc Am; 2021 Nov; 150(5):3417. PubMed ID: 34852609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Network-Based Optimization of an Acousto Microfluidic System for Submicron Bioparticle Separation.
    Talebjedi B; Heydari M; Taatizadeh E; Tasnim N; Li ITS; Hoorfar M
    Front Bioeng Biotechnol; 2022; 10():878398. PubMed ID: 35519621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
    Liu P; Tian Z; Hao N; Bachman H; Zhang P; Hu J; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3399-3409. PubMed ID: 32779677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.