These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 38222643)
1. Application of Nanohybrid Substrates with Layer-by-Layer Self-Assembling Properties to High-Sensitivity Surface-Enhanced Raman Scattering Detection. Chen YF; Lee YC; Lin WW; Lu MC; Yang YC; Chiu CW ACS Omega; 2024 Jan; 9(1):1894-1903. PubMed ID: 38222643 [TBL] [Abstract][Full Text] [Related]
2. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Sridhar K; Inbaraj BS; Chen BH Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615 [TBL] [Abstract][Full Text] [Related]
3. Hydrophilic-Hydrophobic Nanohybrids of AuNP-Immobilized Two-Dimensional Nanomica Platelets as Flexible Substrates for High-Efficiency and High-Selectivity Surface-Enhanced Raman Scattering Microbe Detection. Chen YF; Wang CH; Chang WR; Li JW; Hsu MF; Sun YS; Liu TY; Chiu CW ACS Appl Bio Mater; 2022 Mar; 5(3):1073-1083. PubMed ID: 35195391 [TBL] [Abstract][Full Text] [Related]
4. Immobilization and 3D Hot-Junction Formation of Gold Nanoparticles on Two-Dimensional Silicate Nanoplatelets as Substrates for High-Efficiency Surface-Enhanced Raman Scattering Detection. Lee YC; Chiu CW Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30823691 [TBL] [Abstract][Full Text] [Related]
5. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. Chang WR; Hsiao C; Chen YF; Kuo CJ; Chiu CW ACS Omega; 2022 Nov; 7(45):41815-41826. PubMed ID: 36406539 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Mevold AH; Hsu WW; Hardiansyah A; Huang LY; Yang MC; Liu TY; Chan TY; Wang KS; Su YA; Jeng RJ; Wang JK; Wang YL Nanoscale Res Lett; 2015 Dec; 10(1):397. PubMed ID: 26459427 [TBL] [Abstract][Full Text] [Related]
7. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
8. Flexible nanohybrid substrates utilizing gold nanocubes/nano mica platelets with 3D lightning-rod effect for highly efficient bacterial biosensors based on surface-enhanced Raman scattering. Chen YF; Lu MC; Lee CJ; Chiu CW J Mater Chem B; 2024 Mar; 12(13):3226-3239. PubMed ID: 38451239 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic Paper-Based SERS Sensor Using Gold Nanoparticles Arranged on Graphene Oxide Flakes. Lee DJ; Kim DY Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835903 [TBL] [Abstract][Full Text] [Related]
10. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detection. Chiang CY; Liu TY; Su YA; Wu CH; Cheng YW; Cheng HW; Jeng RJ Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970772 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced Raman scattering enhancement using a hybrid gold nanoparticles@carbon nanodot substrate for herbicide detection. Aboualigaledari N; Jayapalan A; Tukur P; Liu M; Tukur F; Zhang Y; Ducatte G; Verma M; Tarus J; Hunyadi Murph SE; Wei J Analyst; 2024 Oct; 149(21):5277-5286. PubMed ID: 39269438 [TBL] [Abstract][Full Text] [Related]
13. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Chen Z; Lu S; Zhang Z; Huang X; Zhao H; Wei J; Li F; Yuan K; Su L; Xiong Y Mikrochim Acta; 2022 Jul; 189(8):275. PubMed ID: 35829782 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. Wen P; Yang F; Ge C; Li S; Xu Y; Chen L Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34161934 [TBL] [Abstract][Full Text] [Related]
16. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498 [TBL] [Abstract][Full Text] [Related]
17. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor. Ma H; Zhang S; Yuan G; Liu Y; Cao X; Kong X; Wang Y Appl Spectrosc; 2023 Oct; 77(10):1163-1172. PubMed ID: 37654053 [TBL] [Abstract][Full Text] [Related]
18. Highly Ordered Polymer Nanostructures via Solvent On-Film Annealing for Surface-Enhanced Raman Scattering. Chang KJ; Chen HR; Hung CH; Hung PS; Tseng HF; Lin YL; Hsu HH; Kao TH; Wu PW; Liau I; Chen JT Langmuir; 2022 Jan; 38(2):801-809. PubMed ID: 34951309 [TBL] [Abstract][Full Text] [Related]
19. A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets. Chen YW; Liu TY; Chen PJ; Chang PH; Chen SY Small; 2016 Mar; 12(11):1458-68. PubMed ID: 26814978 [TBL] [Abstract][Full Text] [Related]