These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 38222823)
1. Integrated proteomic analysis reveals interactions between phosphorylation and ubiquitination in rose response to Li R; Yao J; Ming Y; Guo J; Deng J; Liu D; Li Z; Cheng Y Hortic Res; 2024 Jan; 11(1):uhad238. PubMed ID: 38222823 [TBL] [Abstract][Full Text] [Related]
2. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371 [TBL] [Abstract][Full Text] [Related]
3. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. Li D; Liu X; Shu L; Zhang H; Zhang S; Song Y; Zhang Z BMC Plant Biol; 2020 Nov; 20(1):533. PubMed ID: 33228522 [TBL] [Abstract][Full Text] [Related]
4. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance. Liu X; Wang Z; Tian Y; Zhang S; Li D; Dong W; Zhang C; Zhang Z BMC Plant Biol; 2021 Nov; 21(1):526. PubMed ID: 34758750 [TBL] [Abstract][Full Text] [Related]
5. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation. Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484 [TBL] [Abstract][Full Text] [Related]
6. RcMYB84 and RcMYB123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose (Rosa chinensis). Ren H; Bai M; Sun J; Liu J; Ren M; Dong Y; Wang N; Ning G; Wang C Plant J; 2020 Aug; 103(5):1839-1849. PubMed ID: 32524706 [TBL] [Abstract][Full Text] [Related]
7. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea. Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive analysis of bZIP gene family and function of RcbZIP17 on Botrytis resistance in rose (Rosa chinensis). Li D; Li X; Liu X; Zhang Z Gene; 2023 Jan; 849():146867. PubMed ID: 36115481 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. Zhang B; Shao L; Wang J; Zhang Y; Guo X; Peng Y; Cao Y; Lai Z Autophagy; 2021 Sep; 17(9):2093-2110. PubMed ID: 32804012 [TBL] [Abstract][Full Text] [Related]
10. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
11. Rose WRKY13 promotes disease protection to Botrytis by enhancing cytokinin content and reducing abscisic acid signaling. Liu X; Zhou X; Li D; Hong B; Gao J; Zhang Z Plant Physiol; 2023 Jan; 191(1):679-693. PubMed ID: 36271872 [TBL] [Abstract][Full Text] [Related]
12. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. Zhang Y; Zeng L Plant Commun; 2020 Jul; 1(4):100041. PubMed ID: 33367245 [TBL] [Abstract][Full Text] [Related]
13. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca Kilani J; Davanture M; Simon A; Zivy M; Fillinger S J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416 [TBL] [Abstract][Full Text] [Related]
14. Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors. Liñeiro E; Chiva C; Cantoral JM; Sabido E; Fernández-Acero FJ J Proteomics; 2016 Apr; 139():84-94. PubMed ID: 27003611 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanism of modulating miR482b level in tomato with botrytis cinerea infection. Wu F; Xu J; Gao T; Huang D; Jin W BMC Plant Biol; 2021 Oct; 21(1):496. PubMed ID: 34706648 [TBL] [Abstract][Full Text] [Related]
17. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. Li X; Yang R; Chen H PLoS One; 2018; 13(3):e0193458. PubMed ID: 29513733 [TBL] [Abstract][Full Text] [Related]
18. Function of miR825 and miR825* as Negative Regulators in Nie P; Chen C; Yin Q; Jiang C; Guo J; Zhao H; Niu D Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614458 [TBL] [Abstract][Full Text] [Related]
19. Global Proteomic Analysis of Lysine Crotonylation in the Plant Pathogen Zhang N; Yang Z; Liang W; Liu M Front Microbiol; 2020; 11():564350. PubMed ID: 33193151 [TBL] [Abstract][Full Text] [Related]