These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38223172)

  • 1. Single source CARS-based multimodal microscopy system for biological tissue imaging [Invited].
    Sheng M; Zhao Y; Wu Z; Zhao J; Lui H; Kalia S; Zeng H
    Biomed Opt Express; 2024 Jan; 15(1):131-141. PubMed ID: 38223172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser.
    Pope I; Langbein W; Watson P; Borri P
    Opt Express; 2013 Mar; 21(6):7096-106. PubMed ID: 23546091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrally-broad coherent anti-Stokes Raman scattering hyper-microscopy utilizing a Stokes supercontinuum pumped at 800 nm.
    Porquez JG; Cole RA; Tabarangao JT; Slepkov AD
    Biomed Opt Express; 2016 Oct; 7(10):4335-4345. PubMed ID: 27867735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics.
    Meyer T; Chemnitz M; Baumgartl M; Gottschall T; Pascher T; Matthäus C; Romeike BF; Brehm BR; Limpert J; Tünnermann A; Schmitt M; Dietzek B; Popp J
    Anal Chem; 2013 Jul; 85(14):6703-15. PubMed ID: 23781826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator.
    Pegoraro AF; Ridsdale A; Moffatt DJ; Jia Y; Pezacki JP; Stolow A
    Opt Express; 2009 Feb; 17(4):2984-96. PubMed ID: 19219203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region.
    Chen BC; Sung J; Lim SH
    J Phys Chem B; 2010 Dec; 114(50):16871-80. PubMed ID: 21126030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source.
    Murugkar S; Smith B; Srivastava P; Moica A; Naji M; Brideau C; Stys PK; Anis H
    Opt Express; 2010 Nov; 18(23):23796-804. PubMed ID: 21164724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin.
    Wang H; Lee AM; Frehlick Z; Lui H; McLean DI; Tang S; Zeng H
    J Biophotonics; 2013 Apr; 6(4):305-9. PubMed ID: 23418008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses.
    Chen K; Wu T; Wei H; Zhou T; Li Y
    Biomed Opt Express; 2016 Oct; 7(10):3927-3939. PubMed ID: 27867704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift.
    Andresen ER; Birkedal V; Thøgersen J; Keiding SR
    Opt Lett; 2006 May; 31(9):1328-30. PubMed ID: 16642101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering.
    Chen BC; Sung J; Wu X; Lim SH
    J Biomed Opt; 2011 Feb; 16(2):021112. PubMed ID: 21361675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Comparison of Hyperspectral Stimulated Raman Scattering and Coherent Anti-Stokes Raman Scattering Microscopy for Chemical Imaging.
    Clark MG; Brasseale KA; Gonzalez GA; Eakins G; Zhang C
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35575496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy.
    Doughty B; Premadasa UI; Cahill JF; Webb AB; Morrell-Falvey JL; Khalid M; Retterer ST; Ma YZ
    Opt Lett; 2020 Jun; 45(11):3087-3090. PubMed ID: 32479466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirped time-resolved CARS microscopy with square-pulse excitation.
    Upputuri PK; Gong L; Wang H
    Opt Express; 2014 Apr; 22(8):9611-26. PubMed ID: 24787849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chasing lipids in health and diseases by coherent anti-Stokes Raman scattering microscopy.
    Wang HW; Fu Y; Huff TB; Le TT; Wang H; Cheng JX
    Vib Spectrosc; 2009 May; 50(1):160-167. PubMed ID: 19763281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-Spectrum CARS Microscopy of Cells and Tissues with Ultrashort White-Light Continuum Pulses.
    Vernuccio F; Vanna R; Ceconello C; Bresci A; Manetti F; Sorrentino S; Ghislanzoni S; Lambertucci F; Motiño O; Martins I; Kroemer G; Bongarzone I; Cerullo G; Polli D
    J Phys Chem B; 2023 Jun; 127(21):4733-4745. PubMed ID: 37195090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region.
    Lee JY; Kim SH; Moon DW; Lee ES
    Opt Express; 2009 Dec; 17(25):22281-95. PubMed ID: 20052151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale bond-selective imaging by computational fusion of atomic force microscopy and coherent anti-Stokes Raman scattering microscopy.
    Wang L; Cheng JX
    Analyst; 2023 Jun; 148(13):2975-2982. PubMed ID: 37305950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.