These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38223722)

  • 1. Inverted pyramid structures fabricated on monocrystalline silicon surface with a NaOH solution.
    Huo C; Fu H; Peng KQ
    Heliyon; 2024 Jan; 10(1):e23871. PubMed ID: 38223722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure.
    Zhang C; Chen L; Zhu Y; Guan Z
    Nanoscale Res Lett; 2018 Apr; 13(1):91. PubMed ID: 29616361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si.
    Chen W; Liu Y; Yang L; Wu J; Chen Q; Zhao Y; Wang Y; Du X
    Sci Rep; 2018 Feb; 8(1):3408. PubMed ID: 29467511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Silicon Inverted Pyramid-Based Passivated Emitter and Rear Cells.
    Gao K; Liu Y; Fan Y; Shi L; Zhuang Y; Cui Y; Yuan S; Wan Y; Shen W; Huang Z
    Nanoscale Res Lett; 2020 Aug; 15(1):174. PubMed ID: 32857219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable nanoscale inverted pyramids for highly efficient quasi-omnidirectional crystalline silicon solar cells.
    Haiyuan X; Sihua Z; Yufeng Z; Wenzhong S
    Nanotechnology; 2018 Jan; 29(1):015403. PubMed ID: 29199641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Efficient Solar Cells Textured by Cu/Ag-Cocatalyzed Chemical Etching on Diamond Wire Sawing Multicrystalline Silicon.
    Chen W; Liu Y; Wu J; Chen Q; Zhao Y; Wang Y; Du X
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10052-10058. PubMed ID: 30811936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding needles in haystacks: scanning tunneling microscopy reveals the complex reactivity of Si(100) surfaces.
    Skibinski ES; Hines MA
    Acc Chem Res; 2015 Jul; 48(7):2159-66. PubMed ID: 26107690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Isopropyl Alcohol Concentration and Etching Time on Wet Chemical Anisotropic Etching of Low-Resistivity Crystalline Silicon Wafer.
    Abdur-Rahman E; Alghoraibi I; Alkurdi H
    Int J Anal Chem; 2017; 2017():7542870. PubMed ID: 28831284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HF-(NH₄)₂S₂O₈-HCl Mixtures for HNO₃- and NOx-free Etching of Diamond Wire- and SiC-Slurry-Sawn Silicon Wafers: Reactivity Studies, Surface Chemistry, and Unexpected Pyramidal Surface Morphologies.
    Stapf A; Gondek C; Lippold M; Kroke E
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8733-42. PubMed ID: 25826145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.
    Reshak AH; Shahimin MM; Shaari S; Johan N
    Prog Biophys Mol Biol; 2013 Nov; 113(2):327-32. PubMed ID: 24139943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.
    Chen HY; Lu HL; Ren QH; Zhang Y; Yang XF; Ding SJ; Zhang DW
    Nanoscale; 2015 Oct; 7(37):15142-8. PubMed ID: 26243694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverted Pyramid Morphology Control by Acid Modification and Application for PERC Solar Cells.
    Gao K; Liu Y; Cheng H; Zhong S; Tong R; Kong X; Song X; Huang Z
    ACS Omega; 2021 Dec; 6(48):32925-32929. PubMed ID: 34901643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Silicon Nanostructure Arrays for 6-inch Mono and Multi-Crystalline Solar Cell.
    Hsueh CC; Thiyagu S; Liu CT; Syu HJ; Yang ST; Lin CF
    Nanoscale Res Lett; 2019 Jun; 14(1):212. PubMed ID: 31227947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular Dependence of Solar Cell Parameters in Crystalline Silicon Solar Cells Textured with Periodic Array of Microholes.
    Altinoluk S; Kumar N; Ciftpinar EH; Demircioglu O; Turan R; Vasileska D
    Glob Chall; 2020 Sep; 4(9):1900105. PubMed ID: 32995041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Effect of Silicon with Nano-Size Surface Structure on an Electrode Formed Using Screen Printing.
    Kim MY; Kim DS; Byeon SK; Song W; Lim D
    J Nanosci Nanotechnol; 2016 May; 16(5):5222-6. PubMed ID: 27483903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale synthesis of a morphologically controllable silicon ordered array as a platform and its SERS performance.
    Song J; Feng S; Shi H; Han D; Liu G
    RSC Adv; 2023 Nov; 13(48):33625-33633. PubMed ID: 38020018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step texture process for high-efficiency crystalline silicon solar cell applications.
    Kim H; Lee Y; Shin C; Han S; Kim S; Lee Y; Yi J
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7916-9. PubMed ID: 24266164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Characterization of Inverted Silicon Pyramidal Arrays with Randomly Distributed Nanoholes.
    Zhao Y; Zhang K; Li H; Xie C
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standard Deviation Quantitative Characterization and Process Optimization of the Pyramidal Texture of Monocrystalline Silicon Cells.
    Fang Z; Xu Z; Jang T; Zhou F; Huang S
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.