BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38223761)

  • 1. Biocontrol potential of endophytic bacterium
    Wu Y; Tan Y; Peng Q; Xiao Y; Xie J; Li Z; Ding H; Pan H; Wei L
    PeerJ; 2024; 12():e16761. PubMed ID: 38223761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Research of Antagonistic Endophytic Bacterium
    He Y; Miao X; Xia Y; Chen X; Liu J; Zhou G
    Microorganisms; 2024 Apr; 12(4):. PubMed ID: 38674707
    [No Abstract]   [Full Text] [Related]  

  • 3. Butyl succinate-mediated control of Bacillus velezensis  ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides.
    Hwang SH; Maung CEH; Noh JS; Cho JY; Kim KY
    J Appl Microbiol; 2023 Nov; 134(11):. PubMed ID: 37903743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides.
    Li X; Zhang L; Zhao Y; Feng J; Chen Y; Li K; Zhang M; Qi D; Zhou D; Wei Y; Wang W; Xie J
    Food Chem; 2024 Mar; 437(Pt 2):137938. PubMed ID: 37948803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding the mechanism of resistance to anthracnose and induced defence response in tea plants.
    Jeyaraj A; Elango T; Chen X; Zhuang J; Wang Y; Li X
    Mol Plant Pathol; 2023 Oct; 24(10):1330-1346. PubMed ID: 37522519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal effect of volatile organic compounds produced by Streptomyces salmonis PSRDC-09 against anthracnose pathogen Colletotrichum gloeosporioides PSU-03 in postharvest chili fruit.
    Boukaew S; Cheirsilp B; Prasertsan P; Yossan S
    J Appl Microbiol; 2021 Sep; 131(3):1452-1463. PubMed ID: 33570812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal activities of Bacillus velezensis FJAT-52631 and its lipopeptides against anthracnose pathogen Colletotrichum acutatum.
    Deng YJ; Chen Z; Ruan CQ; Xiao RF; Lian HP; Liu B; Chen MC; Wang JP
    J Basic Microbiol; 2023 Jun; 63(6):594-603. PubMed ID: 36646522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz.
    Jin P; Wang H; Tan Z; Xuan Z; Dahar GY; Li QX; Miao W; Liu W
    Pestic Biochem Physiol; 2020 Feb; 163():102-107. PubMed ID: 31973845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal Activity of
    Choub V; Ajuna HB; Won SJ; Moon JH; Choi SI; Maung CEH; Kim CW; Ahn YS
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal Potential of
    Kim TY; Hwang SH; Noh JS; Cho JY; Maung CEH
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887144
    [No Abstract]   [Full Text] [Related]  

  • 11. Antifungal activity of 1-methylcyclopropene (1-MCP) against anthracnose (Colletotrichum gloeosporioides) in postharvest mango fruit and its possible mechanisms of action.
    Xu X; Lei H; Ma X; Lai T; Song H; Shi X; Li J
    Int J Food Microbiol; 2017 Jan; 241():1-6. PubMed ID: 27728853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal Activity of Cyclic Tetrapeptide from
    Choub V; Maung CEH; Won SJ; Moon JH; Kim KY; Han YS; Cho JY; Ahn YS
    Pathogens; 2021 Feb; 10(2):. PubMed ID: 33672094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the rubber anthracnose fungus Colletotrichum gloeosporioides using culture filtrate extract from Streptomyces deccanensis QY-3.
    Gu L; Zhang K; Zhang N; Li X; Liu Z
    Antonie Van Leeuwenhoek; 2020 Nov; 113(11):1573-1585. PubMed ID: 32815093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal action and induction of resistance by
    Zhou A; Wang F; Yin J; Peng R; Deng J; Shen D; Wu J; Liu X; Ma H
    Front Microbiol; 2022; 13():956642. PubMed ID: 36090068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dinactin from a new producer, Streptomyces badius gz-8, and its antifungal activity against the rubber anthracnose fungus Colletotrichum gloeosporioides.
    Zhang K; Gu L; Zhang Y; Liu Z; Li X
    Microbiol Res; 2020 Nov; 240():126548. PubMed ID: 32653809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First report of leaf anthracnose caused by
    Hassan O; Kim SH; Kim KM; Chang T
    Plant Dis; 2023 Apr; ():. PubMed ID: 37018215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana).
    Guardado-Valdivia L; Tovar-Pérez E; Chacón-López A; López-García U; Gutiérrez-Martínez P; Stoll A; Aguilera S
    Microbiol Res; 2018 May; 210():26-32. PubMed ID: 29625655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?
    Yamamoto S; Shiraishi S; Suzuki S
    Lett Appl Microbiol; 2015 Apr; 60(4):379-86. PubMed ID: 25511625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal Mechanism of Volatile Organic Compounds Produced by
    Wang K; Qin Z; Wu S; Zhao P; Zhen C; Gao H
    J Agric Food Chem; 2021 May; 69(17):5267-5278. PubMed ID: 33899461
    [No Abstract]   [Full Text] [Related]  

  • 20. Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado.
    Guerrero-Barajas C; Constantino-Salinas EA; Amora-Lazcano E; Tlalapango-Ángeles D; Mendoza-Figueroa JS; Cruz-Maya JA; Jan-Roblero J
    J Sci Food Agric; 2020 Aug; 100(10):4049-4056. PubMed ID: 32338377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.