BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38224092)

  • 21. Talin, vinculin and nestin expression in orofacial muscles of dystrophin deficient mdx mice.
    Spassov A; Gredes T; Pavlovic D; Gedrange T; Lehmann C; Lucke S; Kunert-Keil C
    Arch Immunol Ther Exp (Warsz); 2012 Apr; 60(2):137-43. PubMed ID: 22307364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct Embryonic Origin and Injury Response of Resident Stem Cells in Craniofacial Muscles.
    Cheng X; Shi B; Li J
    Front Physiol; 2021; 12():690248. PubMed ID: 34276411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression profile and overexpression outcome indicate a role for βKlotho in skeletal muscle fibro/adipogenesis.
    Phelps M; Stuelsatz P; Yablonka-Reuveni Z
    FEBS J; 2016 May; 283(9):1653-68. PubMed ID: 26881702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency.
    Stuelsatz P; Shearer A; Li Y; Muir LA; Ieronimakis N; Shen QW; Kirillova I; Yablonka-Reuveni Z
    Dev Biol; 2015 Jan; 397(1):31-44. PubMed ID: 25236433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of satellite and other functional cell types in muscle repair and regeneration.
    Chen B; Shan T
    J Muscle Res Cell Motil; 2019 Mar; 40(1):1-8. PubMed ID: 30968305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct origins and genetic programs of head muscle satellite cells.
    Harel I; Nathan E; Tirosh-Finkel L; Zigdon H; Guimarães-Camboa N; Evans SM; Tzahor E
    Dev Cell; 2009 Jun; 16(6):822-32. PubMed ID: 19531353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A critical size volumetric muscle loss model in mouse masseter with impaired mastication on nutrition.
    Zhao N; Huang Y; Cheng X; Xie L; Xiao W; Shi B; Li J
    Cell Prolif; 2024 Jun; 57(6):e13610. PubMed ID: 38356342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?
    Perandini LA; Chimin P; Lutkemeyer DDS; Câmara NOS
    FEBS J; 2018 Jun; 285(11):1973-1984. PubMed ID: 29473995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification, Isolation, and Characterization of Mesenchymal Progenitors in Mouse and Human Skeletal Muscle.
    Uezumi A; Kasai T; Tsuchida K
    Methods Mol Biol; 2016; 1460():241-53. PubMed ID: 27492177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases.
    Molina T; Fabre P; Dumont NA
    Open Biol; 2021 Dec; 11(12):210110. PubMed ID: 34875199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells.
    Lepper C; Fan CM
    Genesis; 2010 Jul; 48(7):424-36. PubMed ID: 20641127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing thickness and stiffness of superficial/deep masticatory muscles in orofacial pain: an ultrasound and shear wave elastography study.
    Chen YJ; Lin HY; Chu CA; Wu WT; Chen LR; Özçakar L; Chang KV
    Ann Med; 2023; 55(2):2261116. PubMed ID: 37791609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergist Ablation as a Rodent Model to Study Satellite Cell Dynamics in Adult Skeletal Muscle.
    Kirby TJ; McCarthy JJ; Peterson CA; Fry CS
    Methods Mol Biol; 2016; 1460():43-52. PubMed ID: 27492164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel GFP reporter mouse reveals Mustn1 expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts.
    Krause MP; Moradi J; Coleman SK; D'Souza DM; Liu C; Kronenberg MS; Rowe DW; Hawke TJ; Hadjiargyrou M
    Acta Physiol (Oxf); 2013 Jun; 208(2):180-90. PubMed ID: 23506283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy.
    Cerquone Perpetuini A; Re Cecconi AD; Chiappa M; Martinelli GB; Fuoco C; Desiderio G; Castagnoli L; Gargioli C; Piccirillo R; Cesareni G
    J Cachexia Sarcopenia Muscle; 2018 Aug; 9(4):727-746. PubMed ID: 29781585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration.
    Hong P; Chen K; Huang B; Liu M; Cui M; Rozenberg I; Chaqour B; Pan X; Barton ER; Jiang XC; Siddiqui MA
    J Clin Invest; 2012 Nov; 122(11):3873-87. PubMed ID: 23023707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis.
    Chen X; Li Y
    Cell Adh Migr; 2009; 3(4):337-41. PubMed ID: 19667757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration.
    Fiore D; Judson RN; Low M; Lee S; Zhang E; Hopkins C; Xu P; Lenzi A; Rossi FM; Lemos DR
    Stem Cell Res; 2016 Jul; 17(1):161-9. PubMed ID: 27376715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis.
    Marinkovic M; Fuoco C; Sacco F; Cerquone Perpetuini A; Giuliani G; Micarelli E; Pavlidou T; Petrilli LL; Reggio A; Riccio F; Spada F; Vumbaca S; Zuccotti A; Castagnoli L; Mann M; Gargioli C; Cesareni G
    Life Sci Alliance; 2019 Jun; 2(3):. PubMed ID: 31239312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.