These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38224292)

  • 1. Electrochemical rewiring through quantum conductance effects in single metallic memristive nanowires.
    Milano G; Raffone F; Bejtka K; De Carlo I; Fretto M; Pirri FC; Cicero G; Ricciardi C; Valov I
    Nanoscale Horiz; 2024 Feb; 9(3):416-426. PubMed ID: 38224292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications.
    Milano G; Aono M; Boarino L; Celano U; Hasegawa T; Kozicki M; Majumdar S; Menghini M; Miranda E; Ricciardi C; Tappertzhofen S; Terabe K; Valov I
    Adv Mater; 2022 Aug; 34(32):e2201248. PubMed ID: 35404522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Mediated Ionic Migration in Memristive Nanowires with a Tunable Resistive Switching Mechanism.
    Milano G; Raffone F; Luebben M; Boarino L; Cicero G; Valov I; Ricciardi C
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48773-48780. PubMed ID: 33052645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States.
    Nandakumar SR; Minvielle M; Nagar S; Dubourdieu C; Rajendran B
    Nano Lett; 2016 Mar; 16(3):1602-8. PubMed ID: 26849776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Modeling Study of Metal-Insulator Interfaces to Control the Electronic Transport in Single Nanowire Memristive Devices.
    Milano G; Miranda E; Fretto M; Valov I; Ricciardi C
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53027-53037. PubMed ID: 36396122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum conductance in silicon oxide resistive memory devices.
    Mehonic A; Vrajitoarea A; Cueff S; Hudziak S; Howe H; Labbé C; Rizk R; Pepper M; Kenyon AJ
    Sci Rep; 2013; 3():2708. PubMed ID: 24048282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic conductance response and mechanics-modulated memristive behavior of the Azurin monolayer under cyclic loads.
    Zhang X; Shao J; Chen Y; Chen W; Yu J; Wang B; Zheng Y
    Phys Chem Chem Phys; 2017 Mar; 19(9):6757-6767. PubMed ID: 28211931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating electronic transport to atomic structures in self-assembled quantum wires.
    Qin S; Kim TH; Zhang Y; Ouyang W; Weitering HH; Shih CK; Baddorf AP; Wu R; Li AP
    Nano Lett; 2012 Feb; 12(2):938-42. PubMed ID: 22268695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic scale memristive photon source.
    Cheng B; Zellweger T; Malchow K; Zhang X; Lewerenz M; Passerini E; Aeschlimann J; Koch U; Luisier M; Emboras A; Bouhelier A; Leuthold J
    Light Sci Appl; 2022 Mar; 11(1):78. PubMed ID: 35351848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum thermopower of metallic atomic-size contacts at room temperature.
    Evangeli C; Matt M; Rincón-García L; Pauly F; Nielaba P; Rubio-Bollinger G; Cuevas JC; Agraït N
    Nano Lett; 2015 Feb; 15(2):1006-11. PubMed ID: 25607343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current-Voltage Characteristics.
    Isshiki Y; Li D; Kiguchi M; Nishino T; Pauly F; Fujii S
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11919-11926. PubMed ID: 35225596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular adsorption onto metallic quantum wires.
    Bogozi A; Lam O; He H; Li C; Tao NJ; Nagahara LA; Amlani I; Tsui R
    J Am Chem Soc; 2001 May; 123(19):4585-90. PubMed ID: 11457245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulated Ionic Telegraph Noise in Filamentary Memristive Devices.
    Brivio S; Frascaroli J; Covi E; Spiga S
    Sci Rep; 2019 Apr; 9(1):6310. PubMed ID: 30988321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation.
    Payvand M; Nair MV; Müller LK; Indiveri G
    Faraday Discuss; 2019 Feb; 213(0):487-510. PubMed ID: 30357205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductance fluctuations in chaotic bilayer graphene quantum dots.
    Bao R; Huang L; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Theoretical Insight Into ZnO NWs Memristive Behavior.
    Raffone F; Risplendi F; Cicero G
    Nano Lett; 2016 Apr; 16(4):2543-7. PubMed ID: 26928559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-size metallic conductors.
    van Ruitenbeek JM
    Naturwissenschaften; 2001 Feb; 88(2):59-66. PubMed ID: 11320889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors.
    Yi W; Savel'ev SE; Medeiros-Ribeiro G; Miao F; Zhang MX; Yang JJ; Bratkovsky AM; Williams RS
    Nat Commun; 2016 Apr; 7():11142. PubMed ID: 27041485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Straight Silicon Nanowires and Their Conductive Properties.
    Wu S; Shao YM; Nie TX; Xu L; Jiang ZM; Yang XJ
    Nanoscale Res Lett; 2015 Dec; 10(1):1025. PubMed ID: 26269253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning interfacial thermal conductance of GaN/AlN heterostructure nanowires by constructing core/shell structure.
    Ren X; Wu CW; Li SY; Xie ZX; Zhou WX
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36623322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.