These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38224805)

  • 21. Biological evaluation and osteogenic potential of polyhydroxybutyrate-keratin/Al
    Ghafari F; Karbasi S; Baghaban Eslaminejad M; Sayahpour FA; Kalantari N
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124602. PubMed ID: 37141963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications.
    Mirmusavi MH; Zadehnajar P; Semnani D; Karbasi S; Fekrat F; Heidari F
    Int J Biol Macromol; 2019 Jul; 132():822-835. PubMed ID: 30940593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering.
    Dong L; Wang SJ; Zhao XR; Zhu YF; Yu JK
    Sci Rep; 2017 Oct; 7(1):13412. PubMed ID: 29042614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering.
    Du X; Wei D; Huang L; Zhu M; Zhang Y; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109731. PubMed ID: 31349472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration.
    Yang S; Wang J; Tang L; Ao H; Tan H; Tang T; Liu C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():72-80. PubMed ID: 24441182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery.
    Porgham Daryasari M; Dusti Telgerd M; Hossein Karami M; Zandi-Karimi A; Akbarijavar H; Khoobi M; Seyedjafari E; Birhanu G; Khosravian P; SadatMahdavi F
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):4020-4029. PubMed ID: 31595797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration.
    Huang B; Vyas C; Roberts I; Poutrel QA; Chiang WH; Blaker JJ; Huang Z; Bártolo P
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():266-278. PubMed ID: 30813027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering.
    Huang D; Zuo Y; Zou Q; Wang Y; Gao S; Wang X; Liu H; Li Y
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):51-7. PubMed ID: 21953937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of magnetic nanocomposite scaffolds based on polyvinyl alcohol-chitosan containing hydroxyapatite and clay modified with graphene oxide: Evaluation of their properties for bone tissue engineering applications.
    Babakhani A; Peighambardoust SJ; Olad A
    J Mech Behav Biomed Mater; 2024 Feb; 150():106263. PubMed ID: 38039775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration.
    Karanth D; Song K; Martin ML; Meyer DR; Dolce C; Huang Y; Holliday LS
    Orthod Craniofac Res; 2023 Dec; 26 Suppl 1():188-195. PubMed ID: 36866957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration.
    Angili SN; Morovvati MR; Kardan-Halvaei M; Saber-Samandari S; Razmjooee K; Abed AM; Toghraie D; Khandan A
    Int J Biol Macromol; 2023 Jan; 224():1152-1165. PubMed ID: 36346262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications.
    Zafeiris K; Brasinika D; Karatza A; Koumoulos E; Karoussis IK; Kyriakidou K; Charitidis CA
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111639. PubMed ID: 33321677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.
    Barbosa TV; Dernowsek JA; Tobar RJR; Casali BC; Fortulan CA; Ferreira EB; Selistre-de-Araújo HS; Branciforti MC
    Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35948004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering.
    Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z
    Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications.
    Jirofti N; Hashemi M; Moradi A; Kalalinia F
    Int J Biol Macromol; 2023 Dec; 252():126279. PubMed ID: 37572811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications.
    Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M
    Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.