BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38224813)

  • 1. PRA-Pred: Structure-based prediction of protein-RNA binding affinity.
    Harini K; Sekijima M; Gromiha MM
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129490. PubMed ID: 38224813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features.
    Harini K; Kihara D; Michael Gromiha M
    Methods; 2023 May; 213():10-17. PubMed ID: 36924867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein-carbohydrate complex binding affinity using structural features.
    Siva Shanmugam NR; Jino Blessy J; Veluraja K; Gromiha MM
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPA-Pred: A machine learning approach for predicting the binding affinity of membrane protein-protein complexes.
    Ridha F; Gromiha MM
    Proteins; 2024 Apr; 92(4):499-508. PubMed ID: 37949651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes.
    Nikam R; Yugandhar K; Gromiha MM
    Biochim Biophys Acta Proteins Proteom; 2023 Nov; 1871(6):140948. PubMed ID: 37567456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCA-MutPred: Prediction of Binding Free Energy Change Upon Missense Mutation in Protein-carbohydrate Complexes.
    Siva Shanmugam NR; Veluraja K; Michael Gromiha M
    J Mol Biol; 2022 Jun; 434(11):167526. PubMed ID: 35662456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMH Stab-pred: Predicting the stability of α-helical membrane proteins using sequence and structural features.
    Ramakrishna Reddy P; Kulandaisamy A; Michael Gromiha M
    Methods; 2023 Oct; 218():118-124. PubMed ID: 37572768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProNAB: database for binding affinities of protein-nucleic acid complexes and their mutants.
    Harini K; Srivastava A; Kulandaisamy A; Gromiha MM
    Nucleic Acids Res; 2022 Jan; 50(D1):D1528-D1534. PubMed ID: 34606614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning.
    Krishnan SR; Roy A; Gromiha MM
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38261341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy.
    Dias R; Kolazckowski B
    Proteins; 2015 Nov; 83(11):2100-14. PubMed ID: 26370248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structure-based model for the prediction of protein-RNA binding affinity.
    Nithin C; Mukherjee S; Bahadur RP
    RNA; 2019 Dec; 25(12):1628-1645. PubMed ID: 31395671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MPAD: A Database for Binding Affinity of Membrane Protein-protein Complexes and their Mutants.
    Ridha F; Kulandaisamy A; Michael Gromiha M
    J Mol Biol; 2023 Jul; 435(14):167870. PubMed ID: 36309134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.
    Srinivasulu YS; Wang JR; Hsu KT; Tsai MJ; Charoenkwan P; Huang WL; Huang HL; Ho SY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S14. PubMed ID: 26681483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes.
    Vangone A; Bonvin AMJJ
    Bio Protoc; 2017 Feb; 7(3):e2124. PubMed ID: 34458447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepBSRPred: deep learning-based binding site residue prediction for proteins.
    Nikam R; Yugandhar K; Gromiha MM
    Amino Acids; 2023 Oct; 55(10):1305-1316. PubMed ID: 36574037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein-protein complexes upon mutation using functional classification.
    Jemimah S; Sekijima M; Gromiha MM
    Bioinformatics; 2020 Mar; 36(6):1725-1730. PubMed ID: 31713585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PredPRBA: Prediction of Protein-RNA Binding Affinity Using Gradient Boosted Regression Trees.
    Deng L; Yang W; Liu H
    Front Genet; 2019; 10():637. PubMed ID: 31428122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction.
    Masso M
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 24564918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.