These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38224813)

  • 61. CSM-carbohydrate: protein-carbohydrate binding affinity prediction and docking scoring function.
    Nguyen TB; Pires DEV; Ascher DB
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882232
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A single intermolecular contact mediates intramolecular stabilization of both RNA and protein.
    Calabro V; Daugherty MD; Frankel AD
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6849-54. PubMed ID: 15857951
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Prediction of RNA binding residues: an extensive analysis based on structure and function to select the best predictor.
    Nagarajan R; Gromiha MM
    PLoS One; 2014; 9(3):e91140. PubMed ID: 24658593
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Specific empirical free energy function for automated docking of carbohydrates to proteins.
    Laederach A; Reilly PJ
    J Comput Chem; 2003 Nov; 24(14):1748-57. PubMed ID: 12964193
    [TBL] [Abstract][Full Text] [Related]  

  • 66. COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures.
    Firdaus-Raih M; Hamdani HY; Nadzirin N; Ramlan EI; Willett P; Artymiuk PJ
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W382-8. PubMed ID: 24831543
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I; Martin YC
    J Med Chem; 1999 Mar; 42(5):791-804. PubMed ID: 10072678
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Exploring additivity effects of double mutations on the binding affinity of protein-protein complexes.
    Jemimah S; Gromiha MM
    Proteins; 2018 May; 86(5):536-547. PubMed ID: 29383762
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protein-RNA interactions: structural characteristics and hotspot amino acids.
    Krüger DM; Neubacher S; Grossmann TN
    RNA; 2018 Nov; 24(11):1457-1465. PubMed ID: 30093489
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 71. DBBP: database of binding pairs in protein-nucleic acid interactions.
    Park B; Kim H; Han K
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S5. PubMed ID: 25474259
    [TBL] [Abstract][Full Text] [Related]  

  • 72. HMI-PRED: A Web Server for Structural Prediction of Host-Microbe Interactions Based on Interface Mimicry.
    Guven-Maiorov E; Hakouz A; Valjevac S; Keskin O; Tsai CJ; Gursoy A; Nussinov R
    J Mol Biol; 2020 May; 432(11):3395-3403. PubMed ID: 32061934
    [TBL] [Abstract][Full Text] [Related]  

  • 73. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.
    Liu Q; Ren J; Song J; Li J
    PLoS One; 2015; 10(12):e0144486. PubMed ID: 26675422
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational analysis of bevacizumab binding with protein receptors for its potential anticancer activity.
    Alsakhen N; Radwan ES; Zafer I; Abed Alfattah H; Shamkh IM; Rehman MT; Shahwan M; Khan KA; Ahmed SA
    J Biomol Struct Dyn; 2024 Jan; ():1-21. PubMed ID: 38281913
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Computational structural analysis: multiple proteins bound to DNA.
    Tomovic A; Oakeley EJ
    PLoS One; 2008 Sep; 3(9):e3243. PubMed ID: 18802470
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies.
    Seelam PP; Mitra A; Sharma P
    RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A novel method for quantitatively predicting non-covalent interactions from protein and nucleic acid sequence.
    Wu J; Hu D; Xu X; Ding Y; Yan S; Sun X
    J Mol Graph Model; 2011 Nov; 31():28-34. PubMed ID: 21920789
    [TBL] [Abstract][Full Text] [Related]  

  • 79. PremPRI: Predicting the Effects of Missense Mutations on Protein-RNA Interactions.
    Zhang N; Lu H; Chen Y; Zhu Z; Yang Q; Wang S; Li M
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756481
    [TBL] [Abstract][Full Text] [Related]  

  • 80. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes.
    Xue LC; Rodrigues JP; Kastritis PL; Bonvin AM; Vangone A
    Bioinformatics; 2016 Dec; 32(23):3676-3678. PubMed ID: 27503228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.