BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38224839)

  • 1. Late-spiking retrosplenial cortical neurons are not synchronized with neocortical slow waves in anesthetized mice.
    Mizuno H; Ikegaya Y
    Neurosci Res; 2024 Jun; 203():51-56. PubMed ID: 38224839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.
    Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C
    J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
    Ushimaru M; Kawaguchi Y
    J Neurosci; 2015 Aug; 35(34):11988-2001. PubMed ID: 26311779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laterality of neocortical slow-wave oscillations in anesthetized mice.
    Minamisawa G; Takahashi N; Matsuki N; Ikegaya Y
    Neurosci Res; 2009 Jun; 64(2):240-2. PubMed ID: 19428706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distinct class of slow (~0.2-2 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex.
    Lőrincz ML; Gunner D; Bao Y; Connelly WM; Isaac JT; Hughes SW; Crunelli V
    J Neurosci; 2015 Apr; 35(14):5442-58. PubMed ID: 25855163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical properties of neocortical neurons in slices from children with intractable epilepsy.
    Tasker JG; Hoffman NW; Kim YI; Fisher RS; Peacock WJ; Dudek FE
    J Neurophysiol; 1996 Feb; 75(2):931-9. PubMed ID: 8714665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic Switch between Two Types of Slow Waves in Cerebral Cortex.
    Nghiem TE; Tort-Colet N; Górski T; Ferrari U; Moghimyfiroozabad S; Goldman JS; Teleńczuk B; Capone C; Bal T; di Volo M; Destexhe A
    Cereb Cortex; 2020 May; 30(6):3451-3466. PubMed ID: 31989160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
    Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA
    J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic intrinsic bursting neurons in human neocortex obtained from pediatric patients with epilepsy.
    Tryba AK; Kaczorowski CC; Ben-Mabrouk F; Elsen FP; Lew SM; Marcuccilli CJ
    Eur J Neurosci; 2011 Jul; 34(1):31-44. PubMed ID: 21722205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
    Sheroziya M; Timofeev I
    J Neurosci; 2015 Sep; 35(38):13006-19. PubMed ID: 26400932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neocortical networks entrain neuronal circuits in cerebellar cortex.
    Ros H; Sachdev RN; Yu Y; Sestan N; McCormick DA
    J Neurosci; 2009 Aug; 29(33):10309-20. PubMed ID: 19692605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo.
    Crunelli V; Lörincz ML; Errington AC; Hughes SW
    Pflugers Arch; 2012 Jan; 463(1):73-88. PubMed ID: 21892727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of neocortical inputs in the perirhinal cortex.
    Martina M; Royer S; Paré D
    J Neurosci; 2001 Apr; 21(8):2878-88. PubMed ID: 11306639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
    Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G
    J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer III neurons control synchronized waves in the immature cerebral cortex.
    Namiki S; Norimoto H; Kobayashi C; Nakatani K; Matsuki N; Ikegaya Y
    J Neurosci; 2013 Jan; 33(3):987-1001. PubMed ID: 23325237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New waves: Rhythmic electrical field stimulation systematically alters spontaneous slow dynamics across mouse neocortex.
    Greenberg A; Abadchi JK; Dickson CT; Mohajerani MH
    Neuroimage; 2018 Jul; 174():328-339. PubMed ID: 29535027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks.
    Crunelli V; Errington AC; Hughes SW; Tóth TI
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; Welkenhuysen M; Ruther P; Aarts A; Ulbert I
    J Neurosci Methods; 2019 Mar; 316():58-70. PubMed ID: 30144495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents.
    Horváth C; Ulbert I; Fiáth R
    Neuroimage; 2024 Jan; 285():120484. PubMed ID: 38061688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.