These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 38224888)

  • 1. Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities.
    Al-Sakkari EG; Ragab A; Dagdougui H; Boffito DC; Amazouz M
    Sci Total Environ; 2024 Mar; 917():170085. PubMed ID: 38224888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonic anhydrase to boost CO
    de Oliveira Maciel A; Christakopoulos P; Rova U; Antonopoulou I
    Chemosphere; 2022 Jul; 299():134419. PubMed ID: 35364080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI for Nanomaterials Development in Clean Energy and Carbon Capture, Utilization and Storage (CCUS).
    Chen H; Zheng Y; Li J; Li L; Wang X
    ACS Nano; 2023 Jun; 17(11):9763-9792. PubMed ID: 37267448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO
    Vega LF; Bahamon D
    Acc Chem Res; 2024 Jan; 57(2):188-197. PubMed ID: 38156949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing Health Equity in the Context of Carbon Capture, Utilization, and Sequestration Technologies.
    Rojas-Rueda D; McAuliffe K; Morales-Zamora E
    Curr Environ Health Rep; 2024 Jun; 11(2):225-237. PubMed ID: 38600409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO
    Derse O
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):14353-14364. PubMed ID: 36152094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Assessment of Emission Reduction Potential of CO
    Wei N; Liu SN; Wei F; Li XC
    Huan Jing Ke Xue; 2023 Dec; 44(12):6621-6629. PubMed ID: 38098389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interval chance-constrained programming-based optimization model for carbon capture, utilization, and storage system planning.
    Zhai M; Jia H; Yin D
    Sci Total Environ; 2021 Jun; 772():145560. PubMed ID: 33770860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving predictions of shale wettability using advanced machine learning techniques and nature-inspired methods: Implications for carbon capture utilization and storage.
    Zhang H; Thanh HV; Rahimi M; Al-Mudhafar WJ; Tangparitkul S; Zhang T; Dai Z; Ashraf U
    Sci Total Environ; 2023 Jun; 877():162944. PubMed ID: 36940746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on carbon dioxide capture materials used for carbon dioxide capture, utilization, and storage technology: a review.
    Dang H; Guan B; Chen J; Ma Z; Chen Y; Zhang J; Guo Z; Chen L; Hu J; Yi C; Yao S; Huang Z
    Environ Sci Pollut Res Int; 2024 May; 31(23):33259-33302. PubMed ID: 38698095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Economic feasibility and policy incentive analysis of Carbon Capture, Utilization, and Storage (CCUS) in coal-fired power plants based on system dynamics.
    Ye J; Yan L; Liu X; Wei F
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37487-37515. PubMed ID: 36572778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterials and hybrid nanocomposites for CO
    Saleh TA
    RSC Adv; 2022 Aug; 12(37):23869-23888. PubMed ID: 36093256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Public perceived risks and benefits of carbon capture, utilization, and storage (CCUS): Scale development and validation.
    Xu Y; Liu B; Chen Y; Lu S
    J Environ Manage; 2023 Dec; 347():119109. PubMed ID: 37801951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS.
    Bhagat C; Dudhagara P; Tank S
    J Appl Microbiol; 2018 Feb; 124(2):316-335. PubMed ID: 28921830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research progress and perspectives on carbon capture, utilization, and storage (CCUS) technologies in China and the USA: a bibliometric analysis.
    Ren Q; Wei S; Du J; Wu P
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):76437-76454. PubMed ID: 37269511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon capture, utilization and storage opportunities to mitigate greenhouse gases.
    Rashid MI; Yaqoob Z; Mujtaba MA; Kalam MA; Fayaz H; Qazi A
    Heliyon; 2024 Feb; 10(3):e25419. PubMed ID: 38333824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology.
    Wei N; Jiao Z; Ellett K; Ku AY; Liu S; Middleton R; Li X
    Environ Sci Technol; 2021 Oct; 55(19):13164-13173. PubMed ID: 34549588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Community acceptance and social impacts of carbon capture, utilization and storage projects: A systematic meta-narrative literature review.
    Nielsen JAE; Stavrianakis K; Morrison Z
    PLoS One; 2022; 17(8):e0272409. PubMed ID: 35917379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Ecological Constraints on a CO
    Shih JS; Chen B; Thompson AL; Krupnick A; Livingston D; Pratt R; Pawar R
    Environ Sci Technol; 2023 Oct; 57(43):16255-16264. PubMed ID: 37856836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.