These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38225357)

  • 1. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration.
    Chung WG; Jang J; Cui G; Lee S; Jeong H; Kang H; Seo H; Kim S; Kim E; Lee J; Lee SG; Byeon SH; Park JU
    Nat Nanotechnol; 2024 May; 19(5):688-697. PubMed ID: 38225357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature-inspired saccadic-like electrical stimulation paradigm promotes sustained retinal ganglion cell responses by spatiotemporally alternating activation of contiguous multi-electrode patterns.
    Haq W; Basavaraju S; Speck A; Zrenner E
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36066085
    [No Abstract]   [Full Text] [Related]  

  • 4. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible microelectrode array for retinal prosthesis.
    Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of stimulation parameters for epi-retinal implant based on biosafety consideration.
    Lu Y; Qin S; Zhao L; Yue L; Wu T; Qin B; Xu Z
    PLoS One; 2020; 15(7):e0236176. PubMed ID: 32697792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration.
    Aplin FP; Fletcher EL; Luu CD; Vessey KA; Allen PJ; Guymer RH; Shepherd RK; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5216-5229. PubMed ID: 27701633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation.
    Damle S; Carleton M; Kapogianis T; Arya S; Cavichini-Corderio M; Freeman WR; Lo YH; Oesch NW
    eNeuro; 2021; 8(6):. PubMed ID: 34799411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal aspects of pulsed electrical stimuli on the responses of rabbit retinal ganglion cells.
    Jensen RJ; Ziv OR; Rizzo JF; Scribner D; Johnson L
    Exp Eye Res; 2009 Dec; 89(6):972-9. PubMed ID: 19766116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimizing axon bundle activation of retinal ganglion cells with oriented rectangular electrodes.
    Tong W; Hejazi M; Garrett DJ; Esler T; Prawer S; Meffin H; Ibbotson MR
    J Neural Eng; 2020 Jun; 17(3):036016. PubMed ID: 32375131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Stimulation of the Retina to Produce Artificial Vision.
    Weiland JD; Walston ST; Humayun MS
    Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipolar surface electrical stimulation of the vertebrate retina.
    Humayun M; Propst R; de Juan E; McCormick K; Hickingbotham D
    Arch Ophthalmol; 1994 Jan; 112(1):110-6. PubMed ID: 8285877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evaluation of an episcleral multielectrode array for stimulation of the retina with reduced retinal ganglion cell mass.
    Siu TL; Morley JW
    J Clin Neurosci; 2008 May; 15(5):552-8. PubMed ID: 18342512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of epiretinal prostheses - evaluation of geometrical factors affecting stimulation thresholds.
    Kasi H; Hasenkamp W; Cosendai G; Bertsch A; Renaud P
    J Neuroeng Rehabil; 2011 Aug; 8():44. PubMed ID: 21854602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a very large array for retinal stimulation.
    Waschkowski F; Brockmann C; Laube T; Mokwa W; Roessler G; Walter P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2748-51. PubMed ID: 24110296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional electro-neural interfaces electroplated on subretinal prostheses.
    Butt E; Wang BY; Shin A; Chen ZC; Bhuckory M; Shah S; Galambos L; Kamins T; Palanker D; Mathieson K
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38364290
    [No Abstract]   [Full Text] [Related]  

  • 20. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits.
    Walter P; Heimann K
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):315-8. PubMed ID: 10853930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.