BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38225565)

  • 1. Methodology for biomarker discovery with reproducibility in microbiome data using machine learning.
    Rojas-Velazquez D; Kidwai S; Kraneveld AD; Tonda A; Oberski D; Garssen J; Lopez-Rincon A
    BMC Bioinformatics; 2024 Jan; 25(1):26. PubMed ID: 38225565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust microbiome signature for autism spectrum disorder across different studies using machine learning.
    Peralta-Marzal LN; Rojas-Velazquez D; Rigters D; Prince N; Garssen J; Kraneveld AD; Perez-Pardo P; Lopez-Rincon A
    Sci Rep; 2024 Jan; 14(1):814. PubMed ID: 38191575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods.
    Bakir-Gungor B; Hacılar H; Jabeer A; Nalbantoglu OU; Aran O; Yousef M
    PeerJ; 2022; 10():e13205. PubMed ID: 35497193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems.
    Topçuoğlu BD; Lesniak NA; Ruffin MT; Wiens J; Schloss PD
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable feature selection based on the ensemble L
    Moon M; Nakai K
    BMC Genomics; 2016 Dec; 17(Suppl 13):1026. PubMed ID: 28155664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease.
    Lee Y; Cappellato M; Di Camillo B
    Gigascience; 2022 Dec; 12():. PubMed ID: 37882604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning-Based Analytic Pipeline Applied to Clinical and Serum IgG Immunoproteome Data To Predict Chlamydia trachomatis Genital Tract Ascension and Incident Infection in Women.
    Liu C; Mokashi NV; Darville T; Sun X; O'Connell CM; Hufnagel K; Waterboer T; Zheng X
    Microbiol Spectr; 2023 Aug; 11(4):e0468922. PubMed ID: 37318345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Machine Learning Approach Reveals a Microbiota Signature for Infection with Mycobacterium avium subsp.
    Lee SM; Park HT; Park S; Lee JH; Kim D; Yoo HS; Kim D
    Microbiol Spectr; 2023 Feb; 11(1):e0313422. PubMed ID: 36656029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering Potential Taxonomic Biomarkers of Type 2 Diabetes From Human Gut Microbiota
    Bakir-Gungor B; Bulut O; Jabeer A; Nalbantoglu OU; Yousef M
    Front Microbiol; 2021; 12():628426. PubMed ID: 34512559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Algorithms Applied to Predict Autism Spectrum Disorder Based on Gut Microbiome Composition.
    Olaguez-Gonzalez JM; Chairez I; Breton-Deval L; Alfaro-Ponce M
    Biomedicines; 2023 Sep; 11(10):. PubMed ID: 37893007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust biomarker discovery for microbiome-wide association studies.
    Zhu Q; Li B; He T; Li G; Jiang X
    Methods; 2020 Feb; 173():44-51. PubMed ID: 31238097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning.
    Founta K; Dafou D; Kanata E; Sklaviadis T; Zanos TP; Gounaris A; Xanthopoulos K
    Mol Med; 2023 Jan; 29(1):12. PubMed ID: 36694130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of gut microbiome for detection of autism spectrum disorder.
    Wu T; Wang H; Lu W; Zhai Q; Zhang Q; Yuan W; Gu Z; Zhao J; Zhang H; Chen W
    Microb Pathog; 2020 Dec; 149():104568. PubMed ID: 33096147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using gut microbiota as a diagnostic tool for colorectal cancer: machine learning techniques reveal promising results.
    Lu F; Lei T; Zhou J; Liang H; Cui P; Zuo T; Ye L; Chen H; Huang J
    J Med Microbiol; 2023 Jun; 72(6):. PubMed ID: 37288545
    [No Abstract]   [Full Text] [Related]  

  • 17. Characteristics of Fecal Microbiota and Machine Learning Strategy for Fecal Invasive Biomarkers in Pediatric Inflammatory Bowel Disease.
    Wang X; Xiao Y; Xu X; Guo L; Yu Y; Li N; Xu C
    Front Cell Infect Microbiol; 2021; 11():711884. PubMed ID: 34950604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers.
    Kong X; Liu J; Cetinbas M; Sadreyev R; Koh M; Huang H; Adeseye A; He P; Zhu J; Russell H; Hobbie C; Liu K; Onderdonk AB
    Nutrients; 2019 Sep; 11(9):. PubMed ID: 31489949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-based microbiome representation enhances host phenotype classification.
    Deschênes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F
    mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.
    Abnoosian K; Farnoosh R; Behzadi MH
    BMC Bioinformatics; 2023 Sep; 24(1):337. PubMed ID: 37697283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.