BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 38226013)

  • 1. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects.
    Chen Y; Gan W; Cheng Z; Zhang A; Shi P; Zhang Y
    Mater Today Bio; 2024 Feb; 24():100920. PubMed ID: 38226013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical Overview on Pure Chitosan-based Scaffolds for Bone Tissue Engineering: Clinical insights in Dentistry.
    Signorini L; Marenzi G; Facente A; Marrelli B; Marano RM; Valletta A; Pacifici L; Gasparro R; Sammartino G; Severino M
    Int J Med Sci; 2023; 20(12):1527-1534. PubMed ID: 37859701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan-based 3D-printed scaffolds for bone tissue engineering.
    Yadav LR; Chandran SV; Lavanya K; Selvamurugan N
    Int J Biol Macromol; 2021 Jul; 183():1925-1938. PubMed ID: 34097956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.
    Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y
    Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in carbon dots: synthesis and applications in bone tissue engineering.
    Zhang R; Hou Y; Sun L; Liu X; Zhao Y; Zhang Q; Zhang Y; Wang L; Li R; Wang C; Wu X; Li B
    Nanoscale; 2023 Feb; 15(7):3106-3119. PubMed ID: 36723029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects.
    Tsiklin IL; Shabunin AV; Kolsanov AV; Volova LT
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    MouriƱo V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone Engineering Scaffolds With Exosomes: A Promising Strategy for Bone Defects Repair.
    Zhang M; Li Y; Feng T; Li R; Wang Z; Zhang L; Yin P; Tang P
    Front Bioeng Biotechnol; 2022; 10():920378. PubMed ID: 35782499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine.
    Qi J; Yu T; Hu B; Wu H; Ouyang H
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibiting the "isolated island" effect in simulated bone defect repair using a hollow structural scaffold design.
    Liu X; Gao J; Liu J; Zhang L; Li M
    Front Bioeng Biotechnol; 2024; 12():1362913. PubMed ID: 38633663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair.
    Wang D; Cao H; Hua W; Gao L; Yuan Y; Zhou X; Zeng Z
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential therapeutic role of extracellular vesicles in critical-size bone defects: Spring of cell-free regenerative medicine is coming.
    Liu F; Sun T; An Y; Ming L; Li Y; Zhou Z; Shang F
    Front Bioeng Biotechnol; 2023; 11():1050916. PubMed ID: 36733961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering.
    Liu Y; Lim J; Teoh SH
    Biotechnol Adv; 2013; 31(5):688-705. PubMed ID: 23142624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds.
    Zhu G; Zhang T; Chen M; Yao K; Huang X; Zhang B; Li Y; Liu J; Wang Y; Zhao Z
    Bioact Mater; 2021 Nov; 6(11):4110-4140. PubMed ID: 33997497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis.
    Shanbhag S; Pandis N; Mustafa K; Nyengaard JR; Stavropoulos A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e336-e349. PubMed ID: 28095650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current advances for bone regeneration based on tissue engineering strategies.
    Shi R; Huang Y; Ma C; Wu C; Tian W
    Front Med; 2019 Apr; 13(2):160-188. PubMed ID: 30047029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges.
    Abdelaziz AG; Nageh H; Abdo SM; Abdalla MS; Amer AA; Abdal-Hay A; Barhoum A
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.