These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38226144)

  • 1. One-drop chemosensing of dapoxetine hydrochloride using opto-analysis by multi-channel μPAD decorated silver nanoparticles: introducing a paper-based microfluidic portable device/sensor toward naked-eye pharmaceutical analysis by lab-on-paper technology.
    Bahavarnia F; Kohansal F; Hasanzadeh M
    RSC Adv; 2024 Jan; 14(4):2610-2620. PubMed ID: 38226144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic paper-based colorimetric quantification of malondialdehyde using silver nanoprism toward
    Bahavarnia F; Baghban HN; Eskandani M; Hasanzadeh M
    RSC Adv; 2023 Oct; 13(43):30499-30510. PubMed ID: 37854491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable colorimetric chemosensing regime for ractopamine in chicken samples using μPCD decorated by silver nanoprisms.
    Baghban HN; Hasanzadeh M; Liu Y; Seidi F
    RSC Adv; 2022 Sep; 12(39):25675-25686. PubMed ID: 36199355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a hydrophobic-hydrophilic open-droplet microfluidic chemosensor towards colorimetric/spectrophotometric recognition of quetiapine fumarate: a cost-benefit method for biomedical analysis using a smartphone.
    Baghban HN; Ghaseminasab K; Hasanzadeh M
    Anal Methods; 2023 Jul; 15(29):3549-3561. PubMed ID: 37449384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles.
    Saadati A; Farshchi F; Hasanzadeh M; Liu Y; Seidi F
    RSC Adv; 2022 Aug; 12(34):21836-21850. PubMed ID: 36091189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The colorimetric and microfluidic paper-based detection of cysteine and homocysteine using 1,5-diphenylcarbazide-capped silver nanoparticles.
    Shariati S; Khayatian G
    RSC Adv; 2021 Jan; 11(6):3295-3303. PubMed ID: 35747694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Determination of the Serotonin Reuptake Inhibitor, Dapoxetine, Using Cesium-Gold Nanoparticles.
    Mohamed MA; Atty SA; Yehia AM; Foster CW; Banks CE; Allam NK
    ACS Omega; 2017 Oct; 2(10):6628-6635. PubMed ID: 30023526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD) towards selective and sensitive recognition of uric acid by AuNPs: an innovative portable tool for the rapid and low-cost identification of clinically relevant biomolecules.
    Farshchi F; Saadati A; Hasanzadeh M; Seidi F
    RSC Adv; 2021 Aug; 11(44):27298-27308. PubMed ID: 35480692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemometrics-assisted microfluidic paper-based analytical device for the determination of uric acid by silver nanoparticle plasmon resonance.
    Hamedpour V; Postma GJ; van den Heuvel E; Jansen JJ; Suzuki K; Citterio D
    Anal Bioanal Chem; 2018 Mar; 410(9):2305-2313. PubMed ID: 29435632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional one-droplet microfluidic chemosensing of ractopamine in real samples: a user-oriented flexible nano-architecture for on-site food and pharmaceutical analysis using optical sensors.
    Baghban HN; Hasanzadeh M
    Anal Methods; 2023 Sep; 15(35):4506-4517. PubMed ID: 37615053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoprisms.
    Yakoh A; Rattanarat P; Siangproh W; Chailapakul O
    Talanta; 2018 Feb; 178():134-140. PubMed ID: 29136803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a colorimetric sensor based on the coupling of a microfluidic paper-based analytical device and headspace microextraction for determination of formaldehyde in textile, milk, and wastewater samples.
    Mohammadi V; Saraji M
    Mikrochim Acta; 2023 Dec; 191(1):66. PubMed ID: 38158412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.
    Jarujamrus P; Meelapsom R; Pencharee S; Obma A; Amatatongchai M; Ditcharoen N; Chairam S; Tamuang S
    Anal Sci; 2018; 34(1):75-81. PubMed ID: 29321463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distance-based detection of paracetamol in microfluidic paper-based analytical devices for forensic application.
    Moreira NS; Pinheiro KMP; Sousa LR; Garcia GDS; Figueredo F; Coltro WKT
    Anal Methods; 2023 Dec; 16(1):33-39. PubMed ID: 38010169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Chromatic Laser-Printed Microfluidic Paper-Based Analytical Device (μPAD) for the Detection of Atrazine in Water.
    Moulahoum H
    ACS Omega; 2023 Nov; 8(44):41194-41203. PubMed ID: 37970019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Red-to-blue" colorimetric detection of cysteine via anti-etching of silver nanoprisms.
    Li Y; Li Z; Gao Y; Gong A; Zhang Y; Hosmane NS; Shen Z; Wu A
    Nanoscale; 2014 Sep; 6(18):10631-7. PubMed ID: 25083798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via hCG Assay for Pregnancy Test.
    Rahbar M; Zou S; Baharfar M; Liu G
    Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials integrated with microfluidic paper-based analytical devices for enzyme-free glucose quantification.
    Khachornsakkul K; Rybicki FJ; Sonkusale S
    Talanta; 2023 Aug; 260():124538. PubMed ID: 37087948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free silver nanoparticles for the naked eye detection of entecavir.
    Gao M; Lin R; Li L; Jiang L; Ye B; He H; Qiu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():178-83. PubMed ID: 24607467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive, selective and naked-eye detection of bromide and bromate using distance-based paper analytical device.
    Phoonsawat K; Dungchai W
    Talanta; 2021 Jan; 221():121590. PubMed ID: 33076125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.