These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38226345)

  • 1. Electrode-shift Tolerant Myoelectric Movement-pattern Classification using Extreme Learning for Adaptive Sparse Representations.
    Betthauser JL; Osborn LE; Kaliki RR; Thakor NV
    IEEE Biomed Circuits Syst Conf; 2017 Oct; 2017():. PubMed ID: 38226345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.
    Betthauser JL; Hunt CL; Osborn LE; Masters MR; Levay G; Kaliki RR; Thakor NV
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):770-778. PubMed ID: 28650804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position Identification for Robust Myoelectric Control Against Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3121-3128. PubMed ID: 33196444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.
    Lv B; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5652-5655. PubMed ID: 30441618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4319-23. PubMed ID: 23366883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array.
    Boschmann A; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4324-7. PubMed ID: 23366884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder.
    Krasoulis A; Vijayakumar S; Nazarpour K
    Front Neurosci; 2019; 13():891. PubMed ID: 31551674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile, Game-Based Training for Myoelectric Prosthesis Control.
    Winslow BD; Ruble M; Huber Z
    Front Bioeng Biotechnol; 2018; 6():94. PubMed ID: 30050900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interelectrode distance on the robustness of myoelectric pattern recognition systems.
    Young AJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3873-9. PubMed ID: 22255185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.